2 changed files with 117 additions and 0 deletions
@ -0,0 +1,7 @@ |
|||
#!/bin/bash |
|||
for I in job_similarities_*.csv ; do |
|||
./plot.R $I |
|||
mkdir $I.out |
|||
rm $I.out/* |
|||
mv *.png *.pdf $I.out |
|||
done |
@ -0,0 +1,110 @@ |
|||
#!/usr/bin/env Rscript |
|||
|
|||
library(ggplot2) |
|||
library(dplyr) |
|||
require(scales) |
|||
|
|||
args = commandArgs(trailingOnly = TRUE) |
|||
|
|||
file = "job_similarities_5024292.csv" |
|||
file = "job_similarities_7488914.csv" |
|||
|
|||
file = args[1] |
|||
|
|||
data = read.csv(file) |
|||
# Columns are: jobid alg_id alg_name similarity |
|||
|
|||
data$alg_id = as.factor(data$alg_id) |
|||
print(nrow(data)) |
|||
|
|||
# FILTER, TODO |
|||
data = data %>% filter(similarity <= 1.0) |
|||
|
|||
# empirical cummulative density function (ECDF) |
|||
ggplot(data, aes(similarity, color=alg_name, group=alg_name)) + stat_ecdf(geom = "step") + xlab("SIM") + ylab("Fraction of jobs") + theme(legend.position="bottom") + scale_color_brewer(palette = "Set2") |
|||
ggsave("ecdf.png") |
|||
|
|||
e = data %>% filter(similarity >= 0.5) |
|||
ggplot(e, aes(similarity, color=alg_name, group=alg_name)) + stat_ecdf(geom = "step") + xlab("SIM") + ylab("Fraction of jobs") + theme(legend.position="bottom") + scale_color_brewer(palette = "Set2") |
|||
print(summary(e)) |
|||
ggsave("ecdf-0.5.png") |
|||
|
|||
# histogram for the jobs |
|||
ggplot(data, aes(similarity), group=alg_name) + geom_histogram(color="black", binwidth=0.025) + aes(fill = alg_name) + facet_grid(alg_name ~ ., switch = 'y') + scale_y_continuous(limits=c(0, 100), oob=squish) + scale_color_brewer(palette = "Set2") + ylab("Count (cropped at 100)") |
|||
ggsave("hist-sim.png") |
|||
|
|||
# + scale_y_continuous(trans = log2_trans(), breaks = trans_breaks("log2", function(x) 2^x), labels = trans_format("log2", math_format(2^.x))) |
|||
|
|||
#+ ylim(0, 250) + stat_summary(aes(linetype = alg_id), fun.y=mean, geom="line") + |
|||
|
|||
exit(0) |
|||
|
|||
|
|||
|
|||
########### merged |
|||
both = rbind(i[ , (names(i) %in% names(d))], d[ , (names(d) %in% names(i))]) |
|||
both$tpGiB = both$tpMiBs / 1024 |
|||
both$PPN = as.factor(both$PPN) |
|||
|
|||
e = both %>% filter(nodes == 500) |
|||
ggplot(e, aes(PPN, tpGiB, color=config, group=config)) + geom_boxplot() + facet_grid(op + dim ~ ., switch = 'y') + xlab("PPN") + ylab("Performance in GiB/s") + stat_summary(aes(linetype = config), fun.y=mean, geom="line") + theme(legend.position="bottom") + ylim(0, 250) |
|||
ggsave("500-nodes.png") |
|||
|
|||
ggplot(e, aes(PPN, tpGiB, color=config, group=config)) + geom_boxplot(position=pd) + facet_grid(op + dim ~ ., switch = 'y') + xlab("PPN") + ylab("Performance in GiB/s") + stat_summary(aes(linetype = config), fun.y=mean, geom="line") + theme(legend.position="bottom") |
|||
ggsave("500-nodes-all.png") |
|||
|
|||
|
|||
e = both %>% filter(nodes == 200) |
|||
ggplot(e, aes(PPN, tpGiB, color=config, group=config)) + geom_point(position=pd) + facet_grid(op + dim ~ ., switch = 'y') + xlab("PPN") + ylab("Performance in GiB/s") + stat_summary(aes(linetype = config), fun.y=mean, geom="line") + theme(legend.position="bottom") + ylim(0, 250) |
|||
ggsave("200-nodes.png") |
|||
|
|||
ggplot(e, aes(PPN, tpGiB, color=config, group=config)) + geom_point(position=pd) + facet_grid(op + dim ~ ., switch = 'y') + xlab("PPN") + ylab("Performance in GiB/s") + stat_summary(aes(linetype = config), fun.y=mean, geom="line") + theme(legend.position="bottom") |
|||
ggsave("200-nodes-all.png") |
|||
|
|||
|
|||
e = both %>% filter(nodes == 100) |
|||
ggplot(e, aes(PPN, tpGiB, color=config, group=config)) + geom_point(position=pd) + facet_grid(op + dim ~ ., switch = 'y') + xlab("PPN") + ylab("Performance in GiB/s") + stat_summary(aes(linetype = config), fun.y=mean, geom="line") + theme(legend.position="bottom") + ylim(0, 250) |
|||
ggsave("100-nodes.png") |
|||
|
|||
ggplot(e, aes(PPN, tpGiB, color=config, group=config)) + geom_point(position=pd) + facet_grid(op + dim ~ ., switch = 'y') + xlab("PPN") + ylab("Performance in GiB/s") + stat_summary(aes(linetype = config), fun.y=mean, geom="line") + theme(legend.position="bottom") |
|||
ggsave("100-nodes-all.png") |
|||
|
|||
|
|||
########### End merged plots |
|||
|
|||
d$tpGiB = d$tpMiBs / 1024 |
|||
d$nodes = as.factor(d$nodes) |
|||
d$PPN = as.factor(d$PPN) |
|||
d$volume = as.factor(round(d$sizeMiB/1024,1)) |
|||
|
|||
# Compare: |
|||
|
|||
# scale_colour_gradientn(colours=rainbow(3)) |
|||
# d %>% filter(tpGiB > 100) |
|||
|
|||
e = d %>% filter(nodes==5) # , size>100 |
|||
ggplot(e, aes(volume, tpGiB, color=PPN, group=PPN)) + geom_point(position=pd) + facet_grid(op + config ~ ., switch = 'y') + xlab("Volume in GiB") + ylab("Performance in GiB/s") + stat_summary(aes(), fun.y=mean, geom="line") + theme(legend.position="bottom") |
|||
ggsave("5nodes-write-size-compare.png", width=4, height=3) |
|||
|
|||
|
|||
|
|||
|
|||
ggplot(e, aes(volume, tpGiB, color=PPN, group=PPN)) + geom_point(position=pd) + facet_grid(type ~ ., switch = 'y') + xlab("Volume in GiB") + ylab("Performance in GiB/s") + stat_summary(aes(), fun.y=mean, geom="line") + theme(legend.position="bottom") |
|||
ggsave("5nodes-read-size-compare.png", width=4, height=3) |
|||
|
|||
|
|||
e = d %>% filter(size==60000) |
|||
|
|||
ggplot(e, aes(nodes, tpGiB, color=PPN, group=PPN)) + geom_point(position=pd) + facet_grid(type ~ ., switch = 'y') + xlab("Nodes") + ylab("Performance in GiB/s") + stat_summary(aes(), fun.y=mean, geom="line") + theme(legend.position="bottom") |
|||
ggsave("write-60000.png", width=4, height=3) |
|||
|
|||
ggplot(e, aes(nodes, tpGiB, color=PPN, group=PPN)) + geom_point(position=pd) + facet_grid(type ~ ., switch = 'y') + xlab("Nodes") + ylab("Performance in GiB/s") + stat_summary(aes(), fun.y=mean, geom="line") + theme(legend.position="bottom") |
|||
ggsave("read-60000.png", width=4, height=3) |
|||
|
|||
e = d %>% filter(size==60000, PPN==12) |
|||
ggplot(e, aes(nodes, write, color=type, group=type)) + geom_point(position=pd) + xlab("Nodes") + ylab("Performance in GiB/s") + theme(legend.position="bottom") + stat_summary(aes(group=type), fun.y=mean, geom="line") |
|||
ggsave("compare-write-12.png", width=4, height=3) |
|||
|
|||
e = d %>% filter(size==60000, PPN==4) |
|||
ggplot(e, aes(nodes, write, color=type, group=type)) + geom_point(position=pd) + xlab("Nodes") + ylab("Performance in GiB/s") + theme(legend.position="bottom") + stat_summary(aes(group=type), fun.y=mean, geom="line") |
|||
ggsave("compare-write-4.png", width=4, height=3) |
Loading…
Reference in new issue