1 changed files with 78 additions and 0 deletions
@ -0,0 +1,78 @@ |
|||
#!/usr/bin/env python3 |
|||
''' |
|||
; ; User |
|||
; --- ; "username": "u241117" |
|||
+++ ; --- ; "user_id": 20391, |
|||
; --- ; "groupname": "ifmto", |
|||
+++ ; --- ; "group_id": 1597, |
|||
+++ ; --- ; "account": "ku0646", |
|||
; --- ; "parent_accounts": "/root/dkrz/ku0646/ku0646", |
|||
|
|||
; ; Job configuration |
|||
+++ ; --- ; "jobname": "/home/zmaw/u241117/wr-work/TiME/1deg_res/build_dbg/time.ddt.job", |
|||
; --- ; "job_name": "/home/zmaw/u241117/wr-work/TiME/1deg_res/build_dbg/time.ddt.job", |
|||
; --- ; "work_dir": "/mnt/lustre01/work/ku0646/u241117/TiME/1deg_res/build_dbg", |
|||
; ; "time_limit": 1800, |
|||
+++ ; ; "total_cpus": 48, |
|||
+++ ; ; "total_nodes": 1, |
|||
+++ ; ; "ntasks_per_node": 1, |
|||
+++ ; ; "ntasks": 1, |
|||
+++ ; ; "cpus_per_task": 1, |
|||
|
|||
; ; Job runtime statistics |
|||
+++ ; --- ; "jobid": 19611958, |
|||
+++ ; ; "cluster": "mistral", |
|||
+++ ; ; "nodes": " m11275 ", |
|||
+++ ; ; "partition": "compute", |
|||
+++ ; ; "@start": "2020-02-21T13:41:25", |
|||
+++ ; ; "@end": "2020-02-21T14:00:48", |
|||
; ; "@eligible": "2020-02-21T13:41:23", |
|||
; ; "@submit": "2020-02-21T13:41:23", |
|||
+++ ; ; "exit_code": "0:0", |
|||
+++ ; ; "state": "CANCELLED", |
|||
+++ ; ; "elapsed": 1163, |
|||
; ; "cpu_hours": 15.506667, |
|||
|
|||
; ; Other |
|||
; --- ; "std_in": "/dev/null", |
|||
; --- ; "std_out": "/home/zmaw/u241117/wr-work/TiME/1deg_res/build_dbg/time.%j.out", |
|||
; --- ; "std_err": "/home/zmaw/u241117/wr-work/TiME/1deg_res/build_dbg/time.%j.err", |
|||
; ; "pack_job_id": 0, |
|||
; ; "qos": "normal", |
|||
; ; "alloc_node": "mlogin100", |
|||
; ; "pack_job_offset": 0, |
|||
; ; "derived_ec": "0:0", |
|||
; ; "queue_wait": 2, |
|||
|
|||
''' |
|||
|
|||
import os |
|||
#import time |
|||
#import json |
|||
#from difflib import SequenceMatcher |
|||
import numpy as np |
|||
import pandas as pd |
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
FNS = [ |
|||
'job_codings_v3_confidential.csv', |
|||
'job_metadata_confidential.csv', |
|||
] |
|||
|
|||
for in_fn in FNS: |
|||
#(name, ext) = os.path.splitext(in_fn) |
|||
out_fn = in_fn.replace('_confidential', '') |
|||
if not os.path.exists(out_fn): |
|||
print('Processing %s' % in_fn) |
|||
df = pd.read_csv(in_fn) |
|||
df['jobid'] = df['jobid'] ^ 22897682 |
|||
if 'user_id' in df: |
|||
df['user_id'] = df['user_id'] ^ 90235 |
|||
if 'grou_id' in df: |
|||
df['group_id'] = df['group_id'] ^ 30235 |
|||
if 'account' in df: |
|||
df.drop(['account', 'job_name', 'nodes'], inplace=True, axis=1) |
|||
df.to_csv(out_fn, index=False) |
|||
else: |
|||
print('Skipping %s. File exists.' % in_fn) |
Loading…
Reference in new issue