
HPC Usage Behavior Analysis and Performance Estimation
with Machine Learning Techniques

Hao Zhang1, Haihang You2, Bilel Hadri2, and Mark Fahey2
1Department of Electrical Engineering and Computer Science,

University of Tennessee, Knoxville, TN 37996, USA
2National Institute for Computational Sciences,

Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Abstract— Most researchers with little high performance
computing (HPC) experience have difficulties productively
using the supercomputing resources. To address this issue,
we investigated usage behaviors of the world’s fastest aca-
demic Kraken supercomputer, and built a knowledge-based
recommendation system to improve user productivity. Six
clustering techniques, along with three cluster validation
measures, were implemented to investigate the underlying
patterns of usage behaviors. Besides manually defining a
category for very large job submissions, six behavior cat-
egories were identified, which cleanly separated the data
intensive jobs and computational intensive jobs. Then, job
statistics of each behavior category were used to develop a
knowledge-based recommendation system that can provide
users with instructions about choosing appropriate software
packages, setting job parameter values, and estimating job
queuing time and runtime. Experiments were conducted to
evaluate the performance of the proposed recommendation
system, which included 127 job submissions by users from
different research fields. Great feedback indicated the use-
fulness of the provided information. The average runtime
estimation accuracy of 64.2%, with 28.9% job termination
rate, was achieved in the experiments, which almost doubled
the average accuracy in the Kraken dataset.

Keywords: Performance Prediction, Usage Pattern Analysis, Rec-
ommendation System, User Support, Machine Learning

1. Introduction
High Performance Computing (HPC) is becoming increas-

ingly important by addressing various applications related
to science, engineering, service, commerce, security and
defense [15]. To improve productivity, more laboratory re-
searchers are starting to use supercomputers to solve large
problems in their research fields. However, most researchers
without a computer science background or help from HPC
consultants have difficulties productively using the super-
computing resources. Programming for a large HPC system
requires more experience than for a desktop computer. First,
a user needs to know the system-specific information, such
as what software packages are supported by the HPC system
and how many compute cores are appropriate for a specific

Fig. 1: Average accuracy of the requested walltime for each
job category in Table 1.

job on the system. Furthermore, to submit a job to an HPC
system, a user is usually requested to estimate the runtime
of a job for system scheduling. In general, the job runtime
estimate is very inaccurate. According to the historical usage
data of the world’s fastest academic Kraken supercomputer,
the average accuracy of the estimated runtime is less than
38% for each job category, and around 32.5% for the entire
dataset, which is shown in Figure 1. An inaccurate estimate
always causes negative effects. An underestimation increases
the risk that a job is forcefully terminated by an HPC system
before its completion. On the other hand, an overestimation
of the job runtime usually results in a longer queuing time.
In both cases, the productivity of an HPC user is damaged.

In this work, we investigated the usage behavior patterns
of the Kraken supercomputer, which is the world’s fastest
petascale academic supercomputer and the 11th on the latest
Top500 list. We also developed a knowledge-based recom-
mendation system to optimize user service and resource
allocation with the purpose of improving user productivity
at the application level. Historical usage logs of the Kraken
supercomputer were used to analyze the underlying usage
patterns, which were collected from January 2, 2011 to July
21, 2011. We implemented six unsupervised machine learn-
ing algorithms to identify usage behaviors, and applied three
validation measures to compare the clustering algorithms and
determine the appropriate number of behavior categories.

Table 1: Manual classification of jobs in the Kraken super-
computer, which is determined by the number of compute
nodes requested by a user.

Categories Compute Cores Walltimemax
Min Max Percentage (hours)

Small 1 512 0-0.45 24.0
Medium 513 58,192 0.45-7.26 24.0
Large 8,193 49,536 7.26-43.88 24.0
Capability 49,537 98,352 43.88-87.12 48.0
Dedicated 98,353 112,896 87.12-100 48.0
HPSS N/A N/A N/A 24.0

The correct jobs were grouped into seven categories, each of
which represented a usage behavior of an HPC system. The
clustering results can be used by an HPC center to better
understand its user community and provide customized
services to different groups of users with different types of
job submissions. Moreover, considering the fact that HPC
systems with different architectures perform differently on
the same type of jobs, performance comparisons across
different HPC systems provide the potential to identify
which architecture is superior to execute which type of
jobs. Then, based on the statistics in each behavior category,
a knowledge-based recommendation system was developed
to provide users with instructions about choosing software
packages, setting job parameter values, and predicting job
performance. The proposed system enables research com-
munities to share usage experience of a supercomputer, and
researchers may improve their productivity by looking at
similar jobs successfully executed by other users in the same
research area on the same HPC system.

The rest of the paper is organized as follows. Section 2 re-
views existing work. Section 3 describes the historical usage
data of the Kraken supercomputer, and discusses data pre-
processing and feature extraction methods. The unsupervised
machine learning algorithms and cluster validation measures
are introduced in Section 4 for usage behavior analysis. The
proposed recommendation system is also described in this
section. Then, Section 5 presents the experimental results on
Kraken. Finally, Section 6 concludes the paper.

2. Related Work
Although workload modeling was widely researched [19],

only a few studies were reported to address the task of usage
behavior analysis. A naive approach to solve this problem
is to manually classify a job, based on the number of the
requested compute nodes of the job, which is adopted by
most HPC centers for job scheduling, such as the Kraken
supercomputer [11] as shown in Table 1. Another statistical
approach was introduced in [7] to characterize job behaviors
and identify the most active users. Wolter [18] experientially
classified supercomputer users into three groups. Song [14]
proposed a mixed user group model to classify HPC users

and analyze workload traces for job scheduling. However,
the number of the usage categories was predefined, and the
author did not explicitly validate the classification results.

Another related work is to predict the runtime of a job
using historical data. The most widely used methods, such
as in [10], [16], were directly based on the instances in the
historical usage data, which estimated job runtime using the
average runtime of a set of jobs with the highest similarity.
However, a petascale supercomputer usually has millions of
job submissions. It becomes inefficient or even infeasible
for instance-based approaches to save all instances. Some
model-based algorithms were also proposed for runtime pre-
diction, including methods using artificial neural networks
[8] and template-based approaches with greedy and genetic
algorithms [13]. However, artificial neural network, as a
black box model, failed to explicitly unveil the underlying
structures of usage behaviors. In template-based approaches,
the templates had to be defined manually, which are almost
infeasible for a dataset with millions of samples.

3. Usage Data Processing
In this work, we looked at the historical usage data of

the Kraken supercomputer [11], which is managed by the
National Institute for Computational Sciences (NICS) at the
Oak Ridge National Laboratory. Kraken provides a petascale
computing environment fully integrated with the Extreme
Science and Engineering Discovery Environment with access
to the Cray XT5 system. The Kraken supercomputer consists
of 18,816 compute sockets, 147 terabytes of memory, and
3.3 petabytes of storage. Access to computing resources is
managed by the Portable Batch System, and job scheduling
is handled by the Moab. The Lustre file system is used to
support I/O operations.

Usage behavior patterns were analyzed mainly based on
the historical data of jobs that were submitted to the Kraken
supercomputer. Some instances of usage log entries are
listed in Table 2. We also collected account information to
determine to which research field each user belongs, and
conducted surveys to gather specific information, such as
whether a user was an HPC expert. Because most users are
not HPC experts or with help from HPC consultants, it is
unavoidable that their programs contain runtime errors and
exit before completion. On the other hand, due to the lack
of experience to run a job on a supercomputer, it is also
very common that users underestimate job runtime, and a
job is forcefully terminated by the HPC system. If a job
neither completes correctly nor provides meaningful results,
it is considered as an incorrect job. On the contrary, a job
is defined correct, if it belongs to the set:

Jc = {j | (j.mem_used 6= 0) ∧ (j.walltime > 30)

∧ (j.walltime < j.walltime_req)}
(1)

where “.” represents attribute relationship, and the unit of the
attribute walltime is second. Intuitively, a job is incorrect if

Table 2: A typical log file that records the usage activities of the Kraken supercomputer. This exemplary log file contains
five instances. Each row represents a job submission, and each column denotes an attribute of a job.

job_id user_name account nproc mem_used submit_time start_time
0000001.nid00016 user1 U1-INDEX001 12 7588 2011-01-27 08:10:13 2011-01-27 09:26:03
0000002.nid00016 user2 U2-INDEX001 1 142664 2011-03-28 14:15:50 2011-03-28 14:16:14
0000003.nid00016 user1 U2-INDEX001 1032 16276 2011-04-16 01:28:41 2011-04-16 11:51:30
0000004.nid00016 admin SUPPORT 288 11836 2011-05-31 09:43:51 2011-06-04 21:00:20
0000005.nid00016 user1 U1-INDEX002 98304 71812 2011-07-05 17:01:08 2011-07-07 11:11:13

end_time walltime_req walltime cpu_hours queue type software research_area
2011-01-27 09:36:14 00:30:00 00:10:11 3.22 small batch —– Physics
2011-03-28 14:35:01 05:30:00 00:18:47 0.0658 hpss batch wrf Earth Sciences
2011-04-17 11:51:56 24:00:00 24:00:27 24775.74 medium batch mpcugles Physics
2011-06-05 21:00:57 23:59:59 24:00:37 6914.96 small interactive —– Benchmark
2011-07-08 13:11:34 32:00:00 26:00:21 2556477.44 capability batch gadget Earth Sciences

1) it doesn’t consume any memory, which indicates that the
job fails to start executing, possibly due to some compiling
problems, including the situation that the job is compiled on
another HPC system with a different architecture; or 2) the
job quits right after its execution, which is possibly caused
by runtime errors, such as segmentation faults; or 3) the job
is terminated by the HPC system, because it consumes the
requested walltime. The second literal in (1) also contributes
to remove the “Hello World” jobs and simple testing jobs,
in which case a user is a learner or does not care about job
runtime. Because incorrect jobs are always misleading, it is
necessary to remove them to improve the performance of job
classification and runtime estimation. On the other hand, it
should be noted that the definition of a correct job does not
remove all incorrect jobs, such as a job with runtime errors
at the end of its execution. The rest of the incorrect jobs are
considered as noise, or instances with errors.

A feature is a distinctive characteristic of an object, such
as a job, which is often represented as a function of the
object’s attributes. In this work, four features are selected or
extracted from job attribute space, which are defined as:

Nn(j) = log(j.nproc /Cn)

Mu(j) = log(j.mem_used)
Tq(j) = log(j.start_time− j.submit_time)
Tr(j) = log(j.end_time− j.start_time)

(2)

where Nn, Mu, Tq and Tr are the features encoding the
information of number of allocated nodes, memory used, job
queue time and job runtime, respectively; and Cn represents
the number of cores on each node, which is 12 on the Kraken
supercomputer. Because job attributes cover a large range of
values, logarithmic scale is used to represent each feature to
reduce a wide range to a manageable and comparable size.

4. Usage Pattern Modeling
We remove the jobs submitted by system administrators

that typically perform system management tasks, such as
system updating or reservation removing. Moreover, jobs in
the HPSS queue and interactive jobs are also intentionally
removed. HPSS jobs often start executing right after being
submitted, without any compute nodes involved. Interactive
jobs provide a user interactive access to compute resources,
which are commonly used for debugging. At last, we man-
ually classify the jobs requiring over 50,000 cores into the
group of massive jobs. According to our survey, all users
with very large job submissions are HPC experts or work
with HPC consultants. Formally, the job dataset used in this
work is defined as:
J ={ j | (j ∈ Jc) ∧ (j.nproc < 50000)

∧ (j.queue 6= hpss) ∧ (j.type 6= interactive) }
(3)

4.1 Cluster Analysis and Validation
To investigate the underlying structures of usage patterns,

cluster analysis is applied on job set J . Cluster analysis is
an unsupervised learning technique, which groups objects
with similar attributes into respective categories. In cluster
analysis, we do not know either which job belongs to which
category or the number of categories. Six clustering methods,
in three categories, are applied to analyze usage behaviors:

• Partitioning clustering, including k-means [1] and Par-
titioning Around Medoids (PAM) [17];

• Hierarchical clustering, including DIvisive ANAlysis
clustering (DIANA) [5] and Unweighted Pair Group
Method with Arithmetic Mean (UPGMA) [9];

• Artificial Neural Network (ANN) based clustering, in-
cluding Self-Organizing Feature Map (SOFM) [6] and
Self-Organizing Tree Algorithm (SOTA) [4].

Cluster validation evaluates the performance of a cluster-
ing result by comparing it with other ones that are generated

by other clustering methods, or by the same method but with
different parameters, such as different number of clusters.
In this work, three internal validation measures, along with
domain knowledge, are used to choose the best clustering
methods and determine the number of clusters that is most
appropriate for the dataset:

• Connectivity [2] measures cluster connectedness, with
a value in the range [0,∞]. A lower value indicates a
better performance.

• Dunn index [3] is the ratio of the smallest distance
between objects in different clusters to the largest intra-
cluster distance. The value of Dunn index lies in [0,∞],
and a greater value indicates a better performance.

• Silhouette width [12] measures the degree of confidence
in the clustering assignment of an object. Its value
lies in [−1, 1] with a greater value indicating a better
clustering performance.

4.2 Information Recommendation
It is clear that jobs have a wide range of system demands

and might perform differently on the same HPC system.
For example, computation-intensive and data-intensive jobs
might have significantly different runtime, even if they
request the same number of compute nodes. The proposed
knowledge-based recommendation system is based on the
plausible assumption that job submissions in the same
research field tend to perform more similarly, since jobs
submitted by researchers in the same field are more possible
to address similar problems with similar algorithms using
similar software and packages. Moreover, jobs in the same
clustered categories also tend to behave more similarly due
to the similarity of their attributes. In consideration of both
assumptions, we predict the parameters of a target job based
on the information of the jobs that are in the same category
and same research field as the target job.

In the first step, customized information is provided to
a user by the recommendation system, including the dis-
tribution of the jobs, the statistical information of several
job features, and a list of the most frequently used software
and packages in the given research field. Jobs in a research
field conforms to the multinomial distribution given job
categories. A bar graph is used to intuitively represent
this distribution. Then, the statistical summaries of several
features are graphical displayed using box plots. Each box
plot represents the distribution of a feature, its central value,
and variability. The displayed features include Nn and Mu,
i.e., the number of requested compute nodes and consumed
memory. At last, a list of software and packages is provided,
which is obtained by ranking the most frequently used
software and packages used by previous users in the same
research field. In this step, a user is required to determine the
number of requested cores and memory, under the guidance
of the recommendation system.

In the second step, after the number of requested cores and
memory are decided, the features Nn and Mu are computed
according to (2). Then, the queuing time and runtime of the
target job are predicted based on the job distributions and
the job statistics in each behavior category. More precisely,
our goal is to predict the feature vector zj = {Tq, Tr}. Let
yj = {Mu, Nn} be the feature vector that is determined
in the first step by a user in field rj . Then, the distance
between yj and the center of the behavior category k can
be computed using Euclidean distance: djk = ‖yj−E[yjk]‖,
where E[yjk] is the feature vector expectation of the jobs in
the behavior category k and the research field rj . Then, the
target feature vector zj can be computed by:

zj =
1

Zj(yj ,θj)

K∑
k=1

θjk
djk + σ

E[zjk] (4)

where θjk is the probability that job j belongs to category k;
σ is a small positive number to avoid a zero denominator;
and Zj(yj ,θj) is a normalizing factor. The feature vector
zj is computed using a mixture of corresponding cluster
means. The mixture coefficient considers both the clustering
result of the target job, which is represented by the distance
to each cluster center, and the prior knowledge θj that is
the distribution of the jobs in the target job’s research field.
Both elements are important for job classification. While the
distance of a job to a cluster center determines the proba-
bility that the job belongs to the cluster, the job distribution
in a research field, as a prior, prefers the cluster containing
a larger number of jobs that are previously observed. After
the feature vector zj is calculated, the queuing time can
be computed by: ˆj.queuing = 10Tq . In most cases, users
care more about job runtime, which is a required parameter
by most supercomputers to submit a job. According to our
experiments, the job runtime can be better estimated by:

ˆj.runtime = 10(1+α)Tr+β (5)

where α, β ∈ [0, 1]. A good job runtime estimation can be
computed with {α, β} = {0.05, 0}, and a safer estimation
can be obtained with {α, β} = {0.05, 0.3}, which can be
applied to request system walltime. The coefficient (1 + α)
of Tr considers the fact that, for a larger job with more
compute resources and longer runtime, users often tries
to make the job safer (i.e., with a higher probability to
successfully complete the job), by intentionally requesting a
longer system walltime. If a large job is forcefully terminated
by the system before its completion, it often costs much more
than a small job.

5. Experimental Results
We used the historical usage data that were collected from

January 2 to July 21, 2011, after Kraken was upgraded to
the Cray XT5 system. During the time of data collection,
321,290 jobs in 24 different research fields were submitted to

(a) Connectivity measure (b) Dunn index measure (c) Silhouette width measure

Fig. 2: Internal cluster validation of the clustering methods with different number of clusters.

Kraken by 843 researchers from 367 accounts. The Kraken
dataset was first preprocessed to get job set J . In this step,
112265 jobs were removed from the original Kraken dataset,
including 102206 incorrect jobs (termination-rate = 31.8%).
Then, feature vectors were computed for the rest of the jobs
according to (2), and related information, including research
field and software name, was documented.

5.1 Cluster Analysis and Validation
Before clustering the Kraken dataset, a cluster was man-

ually defined as the massive job category that contains jobs
requiring more than 50,000 compute cores, which contains
168 job submissions in the entire preprocessed dataset.

Six clustering approaches were applied to cluster usage
behaviors, and three internal validation measures were em-
ployed to compare the clustering performance and to find the
appropriate number of clusters. The performance evaluation
results are depicted in Figure 2a, 2b and 2c, respectively.
A most important conclusion is that the UPGMA algorithm
performs consistently better than other clustering methods
when using less than nine clusters, which is indicated by all
internal validation measures. We can also observe that other
clustering techniques, if the number of clusters is greater
than three, have similar performance but are generally worse
than the UPGMA algorithm. Thus, the UPGMA algorithm,
an agglomerative hierarchical clustering algorithm, was se-
lected to cluster usage behaviors.

The validation measures were also applied to determine
the appropriate number of clusters. For all clustering algo-
rithms, the connectivity measure in Figure 2a indicates that,
with the increase of the number of clusters, the clustering
performance tends to decrease. Similarly, both the Dunn
index in Figure 2b and the silhouette width in Figure 2c
indicate that clustering performance cannot be improved
by simply increasing the number of clusters. We can also
observe that, for the k-means, PAM and UPGMA algorithms,
two is the best choice for the number of clusters, which is
supported by the connectivity measure and the Dunn index
measure, and partially by the silhouette width measure. On

Table 3: Algorithmic mean of each job feature in different
categories in the Kraken dataset.

Feature c1 c2 c3 c4 c5 c6 c7
E(Tq) 4.24 2.62 2.87 1.89 4.65 3.74 4.27
E(Tr) 4.19 3.63 3.22 2.38 4.15 2.64 3.22
E(Mu) 4.05 4.03 5.11 4.09 4.17 4.12 5.07
E(Nn) 0.19 0.26 1.01 0.98 1.51 1.51 3.90

the other hand, in order to increase the resolution of the job
clustering results, we prefer a larger number of clusters. For
the chosen UPGMA algorithm, the clustering performance
almost consistently declines with the increase of the number
of clusters. But the performance of the algorithm does not
change greatly with the number of clusters lying between
three and six. To balance clustering performance and clus-
tering resolution, six clusters were selected, in which case,
we increased the clustering resolution by sacrificing some
clustering performance. The resulted dendrogram with six
clusters is depicted in Figure 4.

The algorithmic means of job features in each category
are listed in Table 3. Several interesting phenomena should
be noted. First, the behavior category c3 can be considered
as the set of data-intensive jobs. Jobs in this category use
significant memory but relatively less number of compute
nodes. Second, the jobs in the manually defined category c7
are greatly different from the jobs in other categories, which
are both computational and memory-intensive. However,
jobs in this category do not have the longest queuing time,
because the massive jobs have a high priority on the Kraken
supercomputer, and researchers running such jobs usually
reserve the compute resources in advance. These massive
jobs do not have the longest job runtime either. Besides
the fact that the massive jobs use considerable amount of
resources that can speed up job execution, this phenomenon
can be partially explained by the fact that most users running
such jobs have rich HPC knowledge. In most cases, the
massive jobs are optimized. Third, if we only consider the

Fig. 3: Customized information of the jobs in the research field of Astronomical Sciences, which is generated in the first-
round recommendation. The bar graph (left) represents the distribution of the previously submitted jobs on Kraken. The box
plot (center) summaries the statistics of the number of compute nodes requested by the jobs in each category in log scale.
The box plot (right) represents the statistical summary of the consumed memory of the jobs in each category in log scale.

Fig. 4: Dendrogram generated by the UPGMA algorithm
with six categories on the Kraken dataset.

requested compute nodes and the consumed memory to
classify jobs, we can combine the category pair: c1 and c2,
c3 and c4, c5 and c6 in to larger clusters, due to the similarity
of the features in each category pair. This phenomenon is
well supported by the dendrogram. If the UPGMA algorithm
is set to stop with three clusters, the dendrogram will be cut
at the height of 2000, as shown in Figure 4. Fourth, jobs in
the categories c1 and c2 have the longest runtime. Besides
the fact that these jobs use less compute resources, another
possible explanation is that users executing such jobs usually
have less HPC experience and their jobs are not well-tuned.

5.2 Information Recommendation
To demonstrate how the proposed recommendation system

instructs a user to select appropriate job parameters and
predict job performance, a real case is used as an example,
in which case, a researcher planned to solve a problem
in the field of Astronomical Sciences. In the first-round
recommendation, the system first provided a list of packages
that were most frequently used on Kraken to solve problems
in Astronomical Sciences, such as GADGET, YT, SSES, and
CHIMERA. After comparing the packages, the researcher

decided to use Gadget, which is a cosmological smoothed
particle hydrodynamics (SPH) simulator. The proposed sys-
tem also provided the researcher with customized infor-
mation about the job statistics in Astronomical Sciences,
as shown in Figure 3. Some important phenomena were
observed by the researcher. First, more large jobs in c4,
c5, c6 and c7 were executed in this field. Second, almost
all massive jobs in c7 used considerable resources with
similar number of compute nodes but widespread memory.
Third, only a few jobs were data-intensive which generally
consumed a very small number of compute nodes but
significant amount of memory. Fourth, the non-massive non-
data-intensive jobs, in c1, c2, c4, c5 and c6, consumed
similar amount of memory, as shown by the right box plot.
The medians of the number of requested compute nodes of
jobs in c4, c5 and c6 were very close, as indicated by the
center box plot in Figure 3. Based on these observations, the
researcher decided to request 12 GB memory (M̂u ≈ 4.1)
and 12 compute nodes (N̂n ≈ 1.1) for the job.

In the second-round recommendation, the values of Tq
and Tr were computed according to (4), given M̂u and
N̂n. The architecture of the recommendation system and the
estimating process were transparent to users. All feedback
the researcher received from the system was the estimated
queuing time, runtime, and a safe runtime, which can be used
to request system walltime on the Kraken supercomputer.
In this case, the estimated queuing time was 7079 seconds
(zTq = 3.85); the estimated runtime was 5624 seconds
(zTr = 3.57); and the estimated safe runtime was 11221 sec-
onds. After successfully compiling the program on Kraken,
the researcher used the estimated runtime as the requested
system walltime to execute the job. After waiting in the
queue of type small for 11175 seconds on Kraken, the job
started executing, and the actual runtime was 5049 seconds,
which was smaller than but quite close to the job estimated
runtime provided by the proposed recommendation system.

In order to quantitatively measure the accuracy of the run-
time estimation, we applied the Walltime Request Accuracy
(WRA) for a correct job j in Jc, which is defined as:

WRA(j) =
j.walltime

j.walltime_req
× 100% (6)

In the evaluation, 127 jobs submitted by seventeen re-
searchers from different research fields were used to test the
proposed system. The researchers were not HPC experts or
worked with HPC consultants, and the jobs were moderately
optimized. According to their feedback, all researchers con-
sidered that the information provided by the recommendation
system was helpful, especially the job statistics in a research
field. For job runtime estimation, when the researchers
were asked to use the estimated runtime provided by the
recommendation system as the requested walltime, 28.9%
jobs were terminated in force by the Kraken supercomputer,
due to running out of requested walltime. For the correct
jobs, an average WRA of 64.2% was achieved. Comparing
to the average WRA of 32.5% with the termination rate of
31.8% in the Kraken dataset, the estimation performance was
greatly improved. If the users were asked to use the safe
runtime estimate to request system walltime, only 12.2%
jobs exceeded their requested walltime. But the average
WRA decreased to 33.3%. In this case, although the resulted
average WRA was similar to the average WRA in the
Kraken dataset, the termination rate was greatly decreased.
In order to quantitatively measure the error of the estimated
queuing time, the mean absolute percentage error (MAPE)
was applied, which is defined as:

MAPE =
1

T

T∑
t=1

∣∣∣∣∣ ˆj.queuing − j.queuing
j.queuing

∣∣∣∣∣ (7)

where T is the number of testing instances, and ˆj.queuing
and j.queuing are the estimated and actual queuing time,
respectively. The resulted MAPEs were 67.2% and 105.8%
using the estimated runtime and the safe runtime to request
system walltime, respectively. This result indicated that the
queuing time is harder to estimate, which is heavily depen-
dent on the job queue status. Fortunately, the researchers,
like most HPC users, did not much care about the queuing
performance according to their feedback.

6. Conclusion
Usage behaviors of the Kraken supercomputer were sys-

tematically investigated and a knowledge-based recommen-
dation system was developed to improve job performance
and user productivity at the application level. Besides man-
ually defining a category for massive job submissions, six
behavior categories were identified with the UPGMA algo-
rithm, which presented the most promising performance on
the Kraken dataset. Then, a knowledge-based recommenda-
tion system was developed based on the identified behavior

categories and job statistics. The proposed recommendation
system is able to: 1) provide customized information to help
a user determine the software packages, and the number of
compute nodes and amount of memory to request for a job,
2) predict job queuing time and runtime, and estimate a safe
job runtime to request system walltime. Great feedback from
users demonstrated the usefulness of the recommendation
system. The average runtime estimation accuracy of 64.2%,
along with the job termination-rate of 28.9%, was achieved,
which almost doubled the previous average accuracy in the
Kraken dataset.

References
[1] K. Alsabti, S. Ranka, and V. Singh, “An efficient space-partitioning

based algorithm for the k-means clustering,” in The Pacific-Asia Conf.
on Knowledge Discovery and Data Mining, 1999, pp. 355–359.

[2] L. Deborah, R. Baskaran, and A. Kannan, “Survey on internal validity
measure for cluster validation,” International Journal of Computer
Science and Engineering Survey, vol. 1, no. 2, pp. 85–102, Nov. 2010.

[3] J. C. Dunn, “A fuzzy relative of the ISODATA process and its use in
detecting compact Well-Separated clusters,” Journal of Cybernetics,
vol. 3, no. 3, pp. 32–57, 1973.

[4] J. Herrero, A. Valencia, and J. Dopazo, “Phylogenetic reconstruction
using a growing neural network that adopts the topology of a
phylogenetic tree,” pp. 226–233, 1997.

[5] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An
Introduction to Cluster Analysis. Wiley-Interscience, Mar. 1990.

[6] T. Kohonen, Self-organized formation of topologically correct feature
maps, 1988, pp. 509–521.

[7] H. Li, D. Groep, and L. Walters, “Workload characteristics of a
multi-cluster supercomputer,” Job Scheduling Strategies for Parallel
Processing, vol. 3277, 2004.

[8] J. Li, X. Ma, K. Singh, M. Schulz, B. de Supinski, and S. McKee,
“Machine learning based online performance prediction for runtime
parallelization and task scheduling,” in IEEE International Symposium
on Performance Analysis of Systems and Software, 2009.

[9] C. D. Michener and R. R. Sokal, “A quantitative approach to a
problem in classification,” Evolution, vol. 11, 1957.

[10] T. Minh and L. Wolters, “Using historical data to predict application
runtimes on backfilling parallel systems,” in Euromicro International
Conf. on Parallel, Distributed and Network-Based Processing, 2010.

[11] NICS, “Running jobs on Kraken,” http://www.nics.tennessee.edu/
node/16, accessed: 11/11/2011.

[12] P. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis,” J. Comput. Appl. Math., vol. 20, pp.
53–65, Nov. 1987.

[13] W. Smith, I. T. Foster, and V. E. Taylor, “Predicting application run
times using historical information,” in Workshop on Job Scheduling
Strategies for Parallel Processing, 1998, pp. 122–142.

[14] B. Song, C. Ernemann, and R. Yahyapour, “User group-based work-
load analysis and modelling,” in IEEE International Symposium on
Cluster Computing and the Grid, vol. 2, may 2005, pp. 953–961.

[15] Top500, “Application area share for 06/2011,” http://www.top500.org,
accessed: 11/11/2011.

[16] D. Tsafrir, Y. Etsion, and D. Feitelson, “Backfilling using system-
generated predictions rather than user runtime estimates,” IEEE Trans.
Parallel and Distributed Systems, vol. 18, no. 6, pp. 789–803, 2007.

[17] M. van der Laan, K. Pollard, and J. Bryan, “A new partitioning
around medoids algorithm,” Journal of Statistical Computation and
Simulation, vol. 73, no. 8, pp. 575–584, 2003.

[18] N. Wolter, M. McCracken, A. Snavely, L. Hochstein, T. Nakamura,
and V. Basili, “What’s working in HPC: Investigating HPC user
behavior and productivity,” CTWatch Quarterly, vol. 2, no. 4A, 2006.

[19] H. Zhang and H. You, “Comprehensive workload analysis and mod-
eling of a petascale supercomputer,” in Proceedings of the Workshop
on Job Scheduling Strategies for Parallel Processing, 2012.

