
Evalix: Classification and Prediction of Job
Resource Consumption on HPC Platforms

Joseph Emeras∗, Sébastien Varrette†, Mateusz Guzek∗ and Pascal Bouvry†

∗Interdisciplinary Centre for Security Reliability and Trust
†Computer Science and Communications (CSC) Research Unit

6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg, Luxembourg
Firstname.Name@uni.lu

Abstract. At the advent of a wished (or forced) convergence between
High Performance Computing (HPC) platforms, stand-alone accelerators
and virtualized resources from Cloud Computing (CC) systems, this ar-
ticle unveils the job prediction component of the Evalix project. This
framework aims at an improved efficiency of the underlying Resource
and Job Management System (RJMS) within heterogeneous HPC facil-
ities by the automatic evaluation and characterization of the submitted
workload. The objective is not only to better adapt the scheduled jobs
to the available resource capabilities, but also to reduce the energy costs.
For that purpose, we collected the resource consumption of all the jobs
executed on a production cluster for a period of three months. Based on
the analysis then on the classification of the jobs, we computed a resource
consumption model. The objective is to train a set of predictors based
on the aforementioned model, that will give the estimated CPU, mem-
ory and IO used by the jobs. The analysis of the resource consumption
highlighted that different classes of jobs have different kinds of resource
needs and the classification of the jobs enabled to characterize several
application patterns of the users. We also discovered that several users
whose resource usage on the cluster is considered as too low, are respon-
sible for a loss of CPU time on the order of five years over the considered
three month period. The predictors, trained from a supervised learning
algorithm, were able to correctly classify a large set of data. We evalu-
ated them with three performance indicators that gave an information
retrieval rate of 71% to 89% and a probability of accurate prediction be-
tween 0.7 and 0.8. The results of this work will be particularly helpful for
designing an optimal partitioning of the considered heterogeneous plat-
form, taking into consideration the real application needs and thus lead-
ing to energy savings and performance improvements. Moreover, apart
from the novelty of the contribution, the accurate classification scheme
offers new insights of users behavior of interest for the design of future
HPC platforms.

Keywords: RJMS, HPC, Classification, Machine Learning.

1 Introduction

Many organizations have departments and workgroups that benefit (or could
benefit) from High Performance Computing (HPC) resources to analyze, model,

and visualize the growing volumes of data they need to run their business. The
size of the largest HPC platforms has dramatically evolved to attain hundreds
of thousands of processors nowadays. Providing the energy and the cooling in-
frastructure to sustain such large systems is now more than ever a challenge.
These tasks are becoming even more complex, as most of the current facilities
comprise heterogeneous resources nowadays, either due to acquisitions at diverse
period of time, or by the completion of the existing nodes with specialized hard-
ware (GPU or CPU accelerators, FPGAs etc.) to achieve superior throughput
for some specific workloads. Moreover, with the advent of the Cloud Comput-
ing (CC) paradigm and the widespread availability of virtualized computing
resources, the classification and prediction of the most appropriate target for a
given job is key to achieve a better efficiency and reduced energy costs. In this
context, this paper presents the basic brick of the Evalix project, which aims
at the automatic evaluation and characterization of HPC workload and user
patterns to identify the jobs that may benefit from the underlying heterogene-
ity of the platform. For that purpose, we collected the resource consumption of
all the jobs from a production HPC system operated within the University of
Luxembourg (UL) on a period of three months. The analysis of these traces per-
mitted to develop a model that link the profile of the submitted jobs with their
actual usage pattern, whether in terms of CPU, memory or IO load. Another
contribution of this article is the definition and implementation of a supervised
machine-learning approach based on Support Vector Machines (SVMs) to char-
acterize incoming jobs according to that model.

This paper is organized as follows: Section 2 reviews the context and moti-
vations in the origin of the Evalix project. In particular, we demonstrate from
the analysis of Resource and Job Management System (RJMS) logs within a
production HPC platform the necessity to carry on a deeper characterization of
users’ jobs resource consumption. Then, the method used to collect and classify
these usage patterns is presented in Section 3.1. A supervised learning approach
is detailed in Section 4 to deduce the above classification for incoming jobs. A
performance evaluation of the designed predictors is also provided. Section 5
reviews the related works. Finally, Section 6 concludes the paper and provides
some future directions and perspectives opened by this study.

2 Context and Motivations

The performance of an HPC system is obviously determined by the unitary per-
formance of the subsystems that compose it, but also by the efficiency of their
interactions and management by the middleware. In these kind of systems, a
central component called the RJMS is in charge of managing the users’ jobs
on the system’s computing resources. The RJMS has a strategic position in the
whole HPC software stack as it has a constant knowledge of both workload
and resources. In order to improve the scheduling and resource management
strategies, the workload of such systems has been widely studied and led to the
construction of various models, as proposed by Lublin et al. in [1] and D. Fei-

56

378

612

1067

0

300

600

900

2010 2011 2012 2013

C
P

U
 T

im
e

(Y
ea

rs
)

User Name (Obfuscated)
user 1
user 2
user 3
user 4
user 5
user 6
user 7

Fig. 1: Platform Yearly Utilization and Top Users Contributions.

telson in [2]. These models, were later used as a basis in scheduling techniques
evaluations and optimization studies, such as [3] and [4]. However the aforemen-
tioned works were based on the study of the resources allocation to the jobs
and not on their actual usage. We already discovered that allocation and usage
often mismatch [5]. In order to have a more efficient scheduling of the jobs and
a better resource management, it becomes necessary to get a better insight of
the actual resource usage of the jobs. We have once again observed this diver-
gence on a production HPC facility operated since 2007 by the UL. Users of this
facility are people from three faculties and two Interdisciplinary centers within
the UL, which cover various research topics such as bio-medicine, material sci-
ence or security. An overview of the platform, its configuration together with its
management is proposed in [6]. In this paper we study the usage of the Gaia
cluster, the largest and most used of the UL HPC facilities. Composed of 151
nodes for a total of 2004 computing cores at the time of writing, it provides to
more than 200 users a total computing power of 21.178 TFlops and relies upon
the OAR [7] RJMS. During the last two years, i.e. between 2012 and end of 2013,
almost three million jobs were launched, which gives an average throughput of
one job every 23 seconds. Still in the same period, the average run time of jobs
was about 33 minutes and many of them have a run time below the minute. The
most frequent requested allocations are, by order of frequency: 1 core, 1 node,
half a node (i.e. one socket) for single node allocations and 4 nodes, 2 nodes and
3 nodes for multi-node allocations. An average user have submitted more than
5,000 jobs to the RJMS and 9 users have more than 10,000 jobs.

As suggested in a previous study on user behavior [8], not all users have the
same impact on an HPC infrastructure. In this work the authors classified users
in three groups regarding their level of importance based on their utilization
of the platform, assuming that top users were the most productive ones. This
difference of importance between users on the UL HPC platform is well visible
in Figure 1, which presents the yearly CPU time allocated to jobs. For each
year, the 3 largest users in terms of job area (number of resources × run time)
and their relative usage are presented. What is very remarkable is that since
the launch of the platform the computational area of these large users is very

0

25

50

75

Oct 01 Oct 15 Nov 01 Nov 15 Dec 01 Dec 15 Jan 01

U
sa

ge
 (

%
)

Resource Allocation

CPU Usage

Gaia Daily Avg. Cluster Usage − Q4 2013

Fig. 2: Resource Allocation vs. actual
CPU Usage. Over this time period 2 of the
top users are responsible for 38% of total
job area and a low CPU usage.

0

20

40

60

80

Jan 01 Jan 15 Feb 01 Feb 15 Mar 01 Mar 15 Apr 01

U
sa

ge
 (

%
)

Resource Allocation

CPU Usage

Gaia Daily Avg. Cluster Usage − Q1 2014

Fig. 3: Resource Allocation vs. actual
CPU Usage. Time periods with different
relative CPU usage patterns highlight the
presence of different users.

large regarding the total year’s area. For example in 2013, 3 users from the
same laboratory are responsible for 41% of the whole platform utilization. This
confirms the previous idea [8] of the existence of a class of a few top users who
consume a large part of the computing power. In the study by Feitelson et al. [9]
of nine logs taken from the Parallel Workload Archive (PWA)[10], it was found
that in many cases the activity of a few individual users can dominate all other
activity in the system. e.g. in the HPC2N log, one single user was responsible for
57.8% of the whole log activity and in the SDSC and LANL logs, the number of
jobs produced by few users could be 5 to 10 times the average weekly total, but
this only for a short period. However one might wonder if these really use the
platforms in reasonable ways and if their jobs are efficient enough or if they spill
some computational power. Indeed, the time consumed by them is the CPU time
allocated to the jobs and not their actual CPU usage. In a previous work [5], we
showed that the jobs’ actual CPU usage was in many cases very different from
the CPU allocation, even for jobs that are supposed to be CPU intensive.
In order to verify what is the actual CPU utilization, we reconstruct the CPU
usage of the jobs in function of CPU allocation on the UL HPC platform. From
RJMS logs, we compute the percentage of platform’s CPU resources allocated
to the jobs (taking into account failures and resource absence). To estimate the
actual CPU usage on the computing nodes at this level, the data collected by the
Ganglia monitoring system were used1. We measured the average system noise
generated on the nodes by the Ganglia daemon as being negligible, i.e. less than
0.05% over one hour. Information retrieved this way is thus well representative of
jobs CPU usage on the nodes. This information is retrieved at node level, so when
several jobs share the same node we cannot say much about their respective CPU
usage. However, this gives us a general tendency of the utilization vs. allocation.
Figures 2 and 3 present the difference between CPU allocation by the RJMS and
the actual CPU usage of the jobs. The darkest curve presents the percentage of
CPU allocated by the RJMS regarding the total number of resources available
1 Later on, another monitoring tool named Colmet [11] will be used.

in the system at this time. The lightest curve presents the aggregated CPU
usage as reported by Ganglia. Thus the height difference between the two curves
gives the relative CPU usage, which is frequently far from being 100% of what
is allocated. Also, there exists periods with different CPU usage patterns. For
instance in Figure 2, two users are responsible for 38% of job area, for a CPU
usage of about 30%. These users belong to the top 3 users of the year 2013. If
we take shorter time periods with different CPU usage patterns, for example in
Figure 3 from 2014-01-01 to 2014-01-15 and 2014-02-01 to 2014-02-15, we can
observe the impact of the presence of particular users. In the first time period we
have two peaks of high CPU allocation (around 80% of the full platform) with
a CPU usage around 40%. During this period, two users are responsible for 45%
of total job area. These are the same users that were predominant in Figure 2.
On the contrary in the second time period the CPU allocation is lower (varying
between 20% to 40%) for a high relative CPU usage. During this time period
the two users account for 34% of total job area and a single user accounts for
more than 43%. Not surprisingly these two are still the same ones as before and
the user who has the largest job area is also one of the year 2013 top 3 users.
This phenomenon is not isolated and other periods where these 3 top users are
present have the same pattern (e.g. beginning vs. end of March 2014).
In the light of this observation, it seems that the presence of some particular users
can have a strong impact on the platform usage pattern. Moreover it is also well
visible that users have different resource consumption patterns, depending on
the applications they run. This raises the following questions: are there some
typical user profiles that we could extract from the observation of the jobs? and
could we benefit from this knowledge to predict users’ future needs in terms of
resources depending on the jobs they run?
Answering these questions is central in the Evalix project, which aims at the
automatic evaluation and characterization of HPC workload and user patterns
to better adapt to heterogeneous resources. Detailing this project is clearly out of
the scope of this paper. Here, we propose to look deeper into job’s internals and
measure what they use in terms of physical resources. Then based on the history
of jobs consumption, a machine-learning approach is proposed to predict the
expected resource consumption from incoming jobs upon submission. Obviously,
the proposed supervised algorithm is the first step in the design of a framework
able to cover Evalix goals. We now detail the analysis performed to classify the
jobs consumption of the Gaia cluster over the considered 3-month period.

3 Job Consumptions Data Collection and Classification

3.1 Data Collection

Following the previous work on jobs consumption collection initiated in [5], we
choose a monitoring of all the jobs processes, managed at the node level. In our
previous work, we used the Linux /proc virtual filesystem to gather informa-
tion of resource consumption of all the processes that composed a job. Carefully

Platform #cores #users Throughput
(jobs/h)

Job Size Mode
(cores)

Avg.Utilization
(%)

ULHPC Gaia 2,004 84 32.3 12 45.4
Metacentrum 806 147 25 1 36.3
LLNL-uBGL 2,048 62 21.1 1024 56.1
PIK IPLEX 2,560 225 25.6 1 38
LLNL-Thunder 4,008 283 35.7 4 87.9
RICC 8,192 176 122 1 87.2
LLNL-Atlas 9,216 132 12.7 8 64.1
CEA Curie 93,312 722 82.2 1 29.3
ANL intrepid 163,840 236 12 2048 59.6

Median 25.6 4 56.1
MAD 15 4.4 26.8
IQR 14.6 11 26.1

General statistics
Table 1: Comparison of the UL HPC Platform 3-month trace statistics with various
other systems listed in the PWA [10].

polling the filesystem for collecting counters information at a one minute fre-
quency enabled us to capture and analyze a 9 month trace on two production
clusters at little cost. In this paper, we perform the monitoring of jobs con-
sumption with a dedicated tool named Colmet [11], provided as a testing soft-
ware by the OAR RJMS development team. Unlike Ganglia which is designed
for monitoring a whole machine, Colmet is able to evaluate a set of processes.
More precisely, it relies on Linux taskstats accounting feature coupled with the
cgroup [12] kernel isolation mechanism to retrieve at low cost jobs consumption
counters. Collected data is stored on a dedicated node in a file structured in
Hierarchical Data Format v5 (HDF5). This storage type enables to process easily
large volumes of data. The evaluation of this tool is not the topic in this work.
However to give an insight, we measured the overhead induced by Colmet when
monitoring resources by running some carefully selected benchmarks represen-
tative of HPC workloads (NAS Parallel Benchmarks (NPB) [13] version 3.3.1
for instance). Our evaluation demonstrate a performance overhead below 0.1%
for the considered benchmarks, even with a frequency of 1s between each data
collection step. This is by far the less intrusive tool we are aware of, for monitor-
ing a given set of processes at a few seconds frequency and that provides such a
large file storage capability. We collected a 3-month trace on Gaia cluster, from
2014-05-22 to 2014-08-19. This trace is composed of 51859 jobs, belonging to 84
different users. The size of the trace stored in compressed HDF5 is about 10GB
and contains 6.05×109 values from the different metrics retrieved by taskstats.

In order to compare Gaia’s workload with what is observable in other HPC
sites we analyzed 8 of the most recent cluster logs of various size from the PWA.
In Table 1, we present some of their characteristics along with our cluster’s
3-month trace characteristics. We also provide the robust data dispersion indi-
cators: Median Absolute Deviation (MAD) and Inter-Quartile Range (IQR), to
estimate the differences between Gaia and these other systems. Despite its hum-
ble size when compared to large platforms such as CEA Curie or ANL Intrepid,
we can see that Gaia still has a good job throughput and a relatively fair core
utilization. Moreover its job mix is relatively close to what is visible in other

systems and we can assume that our analysis and learning approach could also
benefit to such other systems.

3.2 Analysis of Jobs Consumption

As Colmet collects temporal data, it would be possible to analyze job patterns
during their execution. The analysis of temporal patterns in HPC applications is
definitely worth doing, however due to the complexity of performing the learning
with time series data, we will first focus on the average job consumption patterns.
Thus, this work aims at the coarse grain analysis of jobs resource consumption
and does not focus on temporal data for the moment. The analysis of the time
series though is certainly a very interesting topic and shall be done in further
works. To process and analyze this large amount of data, we first aggregate it
on the job duration and allocated resources. This means that for each job we
have its average CPU and memory usage, maximum memory reached, average
disk IO reads and writes per second. The averages are given per allocated core.
Thanks to the use of lightweight isolation mechanism,Colmet monitoring takes
into account all the processes and threads that belong to a given job and thus
ensures the completeness of job’s usage data. In OAR RJMS, depending on the
user application needs, a job can belong to one of the following classes:

– besteffort jobs are preemptible, low constrained multi-parametric jobs that
are supposed to be CPU-intensive. A besteffort job will always be considered
as being part of the besteffort class, regardless its number of allocated core.

– interactive jobs are for debugging purpose, they provide to the user a direct
shell to his allocated machines.

– serial jobs are jobs requesting only one core.
– parallel jobs are traditional HPC jobs that request several cores.

In order to visualize jobs that may be comparable, the Figure 4 exhibits
jobs consumption statistics grouped by class of job. Figure 4a presents the jobs
average consumption for each metric: CPU, memory (average and maximum)
and IO (reads and writes) along with the proportion of jobs per class. If we
focus on this last metric (bottom right figure), we can see that most of the jobs
are parallel or besteffort. However, even though besteffort jobs account for 30%
of total number of jobs, their area is much lower. In fact, they represent only
4.05% of the total job area while interactive jobs account for a relative area of
1.04% and the area of serial job is 5%. Thus Gaia workload is mainly composed
of parallel jobs.
Figures 4b, 4c, 4d and 4e present violin plots, i.e. box plots with jobs probability
densities. Violins are given per consumption metric and for each job class. The
plot relative to the maximum memory usage is not shown as its data distribution
is quite similar to the average memory usage. In Figure 4b, we observe that
besteffort and serial jobs consume the most the CPU power. We also remark three
distinct patterns in besteffort jobs corresponding to the largest job densities:
around 25%, 75% and 100%. These patterns most probably come from different

Avg. CPU percentage Avg. Memory Used
(MiB per core)

Avg. Maximum Memory Used
(MiB per core)

Avg. Reads
(KiB/s per core)

Avg. Writes
(KiB/s per core) Proportion of Jobs vs. Total Volume

0

20

40

60

0

200

400

600

0

250

500

750

1000

1250

0

1000

2000

3000

0

250

500

750

1000

0.0

0.2

0.4

0.6

besteffort interactive parallel serial besteffort interactive parallel serial besteffort interactive parallel serial

besteffort interactive parallel serial besteffort interactive parallel serial besteffort interactive parallel serial

M
et

ric
 V

al
ue

(a) Jobs Average Consumption per Class.

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●●

●

●

●●

●

●

●●
●●

●

●●

●

●

●

●●

●

●

●●

●●●●●●●●●●
●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●

●

●

●

●●●

●●●●●●●●●●

●●

●●●●●
●●
●
●
●
●●●●●●●●●●●
●●
●
●

●●●●
●

●
●

●

●●●●
●

●

●●●
●

●

●

●

●
●
●●

●

●●●

●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●
●●
●●

●

●●●●●●
●
●
●

●●●
●●●
●●●
●
●
●●●●●
●●●●
●

●●●●
●●●●●●●●●●
●●●●●●

●●

●●●●●●●

●

●●●

●

●
●
●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●
●
●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●
●●●

●

●
●

●●

●

●●

●

●

●

●

●●●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●●

●
●

●

●
●

●
●
●

●

●
●

●●

●●●

●●●
●●
●

●

●

●●

●

●

●

●

●

●
●

●●
●

●

●

●

●●

●

●

●
●
●
●

●
●

●

●
●

●
●

●●

●
●

●

●

●

●
●●

●

●●
●●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●
●
●

●

●
●
●

●

●●
●●

●

●
●●●

●

●●

●●●
●

●

●

●

●

●

●

●

●
●
●
●

●●●●

●
●
●
●
●

●

●

●

●●

●●
●
●

●●

●

●
●
●●

●●

●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●

●

●●

●●●
●

●
●

●●●
●

●

●●

●

●
●●
●●●

●

●●

●

●●

●

●
●

●●

●

●

●

●●●●

●

●

●

●●●

●●●●

●

●●
●

●
●
●●
●●

●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●

●●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●●
●

●●

●

●

●●

●

●

●●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●●

●
●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●●●
●

●

●

●

●●

●
●●●●●

●

●●●●

●

●

●
●
●●

●●

●

●●●●●●●●●●

●

●●●●●●●
●●
●●
●
●●

●

●

●

●●●
●●

●

●
●●●●

●●●●

●

●

●

●

●

●
●

●

●●●●

●
●
●●●

●●●●

●

●
●

●●●

●●
●

●

●
●
●
●
●
●●●
●●●●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●
●
●

●

●

●
●

●

●

●
●●
●
●
●

●

●●
●
●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●●

●

●
●
●
●
●
●
●
●

●●

●

●

●

●●

●●

●
●

●

●●●●●

●

●

●●

●●

●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●
●●
●

●●●

●

●

●

●●
●

●

●

●

●

●●●●
●●
●
●●●
●
●●

●

●

●

●

●
●●
●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●●●●●●●●●●●●●

●●●●●●

●

●

●●
●

●●

●

●
●

●●●●●

●●●
●●●●●●●

●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●●●●●●

●●●●●●●●●
●

●

●●

●

●

●

●●

●●
●
●

●

●

●

●●●
●

●

●●●

●

●

●

●
●●●

●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●●●●●●
●●

●●
●

●

●

●

●●

●

●●

●

●

●

●
●

●

●●●●●●●●●●●●●
●

●●●●●●●●●●●●●

●

●●●●●●●●●
●●●●●●
●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●●●
●

●

●

●

●

●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●
●

●

●●

●●
●

●

●
●●●●●●●

●●●

●
●
●

●
●

●

●●●
●
●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●●

●●●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●
●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●●●●●●●●●●●●

●
●
●●

●

●

●
●

●

●

●●

●

●●
●

●

●

●
●●●

●

●

●

●

●

●

●
●

●

●
●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●
●●
●●

●

●
●
●●

●

●●

●

●●
●●

●

●

●

●

●

●●

●

●●

●

●
●

●

●●
●
●
●

●

●

●

●

●●●

●
●
●●●●●
●
●●●●●●●●●●●

●
●

●

●

●
●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●
●●●●●●
●

●

●●●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●●●●

●
●
●
●

●●●●

●

●
●

●

●

●●●●
●●

●●●●●●●●●●●

●●

●
●

●

●

●

●●
●

●

●●●●●●●
●●
●
●●

●

●●●
●
●

●
●

●

●

●●

●

●

●
●●

●●●●

●

●

●

●

●●●
●●●●●●●●●●●●●●●
●●●●●●●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●●
●

●

●●●●●
●●

●

●●●
●

●
●●
●

●

●

●

●
●

●

●
●

●

●

●●●

●●

●

●●●●

●
●

●

●

●

●

●

●
●

●

●
●●●

●

●

●●

●

●

●

●
●●
●●
●

●

●

●●●
●

●

●●

●

●
●
●

●●

●

●
●

●●

●●
●
●
●●
●
●●●

●

●
●

●

●

●

●●

●

●

●●

●

●
●
●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●●●
●
●●●●●●●●●●●
●●
●

●●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●●

●●●

●

●●●
●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●●
●●●●

●

●

●

●

●●●●

●

●●

●

●

●

●
●

●

●

●
●●●
●
●
●
●
●●
●
●
●
●●●●●
●
●
●●
●●
●
●●
●●
●●●●
●●●●●
●●●●

●

●

●

●

●

●●

●●

●

●●

●

●

●
●●
●●●●●●
●

●

●●
●●
●●
●
●
●●
●

●
●
●
●●
●●●
●
●●
●
●
●

●

●

●

●
●

●

●●●
●●

●

●

●

●●
●

●

●●

●

●●●●●●●●●●●

●

●

●

●
●●●●●●●●●

●
●
●

●

●●
●
●
●●●●●●

●

●
●●
●
●
●
●
●
●

●

●
●

●●●●●●●●

●

●
●●●●●●●●●●●●
●●●●

●
●
●
●
●
●
●●
●●

●

●●●●
●●●●●●●●
●●●

●

●
●
●●
●●●
●●●●
●●
●●

●

●
●●●

●
●
●●●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●●●●

●

●

●

●●●●●
●●

●

●●

●

●

●

●

●

●●

●●●

●

●●

●

●

●
●
●

●

●●●●●
●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●●

●
●
●●

●

●

●

●

●●

●●

●●

●●●

●●●●●●●●●●●

●
●
●
●●●
●●●
●●●
●●
●●●●
●
●
●●●●●●

●

●

●●

●●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●●●●●●●

●

●

●

●●●●●●●●

●

●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●

●

●

●●

●
●
●●●●●●
●●
●●●
●●
●●●
●●
●●

●
●

●

●

●

●

●●●
●●●●

●
●
●
●
●
●●
●●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●●

●

●●●
●●●

●

●

●
●●

●●●

●

●

●

●
●●●●●

●●

●

●
●

●

●

●●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●●●
●

●
●●

●●●●
●●●●
●
●●
●
●
●
●●●●●●●●●
●●
●●●
●●●

●●

●

●

●

●●
●

●●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●●

●

●
●●●●
●●●
●
●
●●
●

●

●●

●●
●●
●

●
●●●
●
●●
●
●●●●●
●
●●
●
●
●

●

●

●

●●

●●●●●●●●●

●

●●

●

●●
●●
●●●

●

●

●

●

●

●

●

●

●

●●●

●●●●●●●●●●●

●

●

●

●

●●●●
●●●

●

●
●

●

●●●
●
●●●
●

●●●
●
●

●
●

●

●●
●

●

●

●

●
●●

●

●

●

●●●

●

●

●

●●

●

●●●
●
●
●

●

●●●

●●

●

●

●●
●●
●
●●●

●

●

●●
●●●●
●

●

●
●●
●

●

●●
●

●●
●

●

●

●●

●

●●

●●

●●

●

●●

●

●●●
●●●

●

●

●

●

●
●
●●●●
●
●
●

●

●●●

●

●●●

●

●●●●

●

●

●

●
●●●●●

●

●●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●●●
●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●●

●

●

●

●

●●

●

●

●
●

●

●

●●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●●
●

●
●

●
●

●

●
●
●●

●

●

●
●

●

●●●

●

●

●

●

●
●●●●●
●

●

●

●
●●●

●
●

●

●

●

●
●●●●●●●●
●

●

●

●

●

●
●●
●
●
●
●
●●●●

●●
●●●
●●●●

●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●

●

●
●●

●

●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●

●

●

●

●●

●

●●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●●●
●●
●●●
●
●●●
●●●●

●

●●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●

●
●

●

●

●

●●●●

●

●
●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●●●●
●

●

●●
●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●
●

●●●●●●●●●
●●●●●●●●●

●

●●●
●

●

●

●
●
●

●

●

●

●
●

●●
●●●●●●●

●

●

●

●●●●

●

●

●

●

●

●

●●

●●●●
●●●●●●●
●
●●●●●●●●●
●

●

●●●●●●●●●●●●●

●

●●●●●

●

●

●
●●●●●
●●●●

●

●

●

●

●●●

●●●●

●

●

●

●●●●●●●
●
●●●●●●●●●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●●●●

●

●●
●
●●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●●
●●
●●●
●

●

●
●●●
●●●
●

●

●●

●

●
●

●

●

●

●●

●

●
●

●

●
●
●●●

●

●

●

●
●
●
●
●
●
●●

●

●

●

●●

●

●

●

●

●
●●
●

●
●

●

●

●

●●●

●

●

●

●

●
●●
●●
●
●

●

●●

●

●

●●

●

●●

●

●●

●

●

●●

●●

●

●

●
●

●

●

●
●

●
●●●●●●●●●●●
●
●●●

●

●

●
●●●
●
●
●
●
●
●●●
●

●
●●●
●

●

●●●

●

●
●

●
●●
●●●●●
●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●
●

●

●●

●●

●

●
●●

●
●●●●
●
●

●

●

●●

●

●●
●
●

●
●
●

●

●

●
●

●

●●
●
●

●

●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●●

●●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

CPU

0

25

50

75

100

besteffort interactive parallel serial

C
P

U
 U

til
iz

at
io

n
P

er
ce

nt
ag

e
pe

r
co

re

(b) CPU Usage Distribution & Density.

●●●
●
●●●●●●●●●●●
●
●●●●●●●

●●●●

●●●●●

●●●

●●●●●
●●●●●●●●●
●●●●

●
●

●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●

●

●●●●●
●

●●●●●●●●●●

●●

●●●●●●●●●

●●●●●●●●●

●

●●●●●●●●●●

●

●
●

●●●●●

●●●●●●●
●

●

●●●●●
●
●
●●●●●●●

●●●●●●●●
●●
●●●●●●●●●●
●

●●

●●●●●●●●

●●●●●

●●

●●

●●

●
●●●●●
●

●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●

●

●

●●
●

●

●

●●●●●●●●●

●

●
●●●●●●●●●

●●●●●

●

●●●●

●

●●●●●●●●●●●

●●●●●

●●
●●●●●●●●

●●●

●●

●●

●●●●●●●
●
●●●●

●

●

●●●●●●●●

●

●
●
●
●●
●●●●●

●

●●●●●●●
●●
●●●●
●●●●●●●
●
●
●●●
●●●●
●●●●●●●●●●●●●●●●●●

●

●●●
●●●●●●●●●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●

●

●

●
●
●●●●●●

●●●

●

●

●●●●●●●●●●●●●●

●
●

●●

●
●

●●

●
●

●●

●●

●●

●
●●

●●

●
●

●●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●

●
●

●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●

●
●

●

●
●

●

●
●

●

●
●

●

●●●

●●●●●●

●●
●
●
●
●
●
●
●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●
●

●
●●

●
●

●
●●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●●

●●
●

●●●●
●
●

●●●●●●●●●●●●●●●●●●●●

●

●●●

●●●
●●

●●●●●
●●●●

●

●

●
●●●●
●●●●

●●●

●

●●●●●

●●●●●

●

●

●
●●
●●
●

●●

●●●●●

●●●
●

●●●●●

●●●●●

●●●●●●●●

●●●●●

●●●●

●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●

●●
●●

●
●

●
●
●

●
●

●
●
●

●
●

●
●

●

●

●●

●

●
●
●

●

●
●●

●

●
●●

●

●
●●

●

●
●●

●

●
●
●

●

●
●

●

●
●
●

●

●

●

●

●

●●

●●●●●●●

●

●●●●●

●

●

●

●●●●●●

●

●●●●●●●
●

●

●●●●
●●

●●

●●●

●●●●

●

●

●●

●
●●●

●●●

●●●●
●●

●●
●●

●

●

●

●

●

●●●●●
●

●●

●

●●

●●
●
●

●●●

●

●

●●

●●
●
●

●●●

●

●

●●

●●
●
●

●●

●

●●●

●●

●●
●
●

●

●●●●

●●

●

●

●
●
●

●●●

●●

●●

●

●
●
●

●●●

●●

●●

●

●
●
●

●●●

●●

●●

●

●
●
●

●●●

●●

●●

●
●●

●●●
●
●●

●●●

●●

●●●
●

●

●

●

●

●
●
●●

●●

●●

●

●

●

●

●
●●●●
●●

●●●

●
●
●
●

●

●●

●●

●

●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●

●●

●●

●

●●

●●●●●●●●●●●●●●●●

●●●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●●●

●
●

●●●●
●●●●●●●●
●●●●●●●●●●●●

●

●

●
●●●●●●●●●●●●

●●●●

●
●

●

●●●●

●
●

●

●●●●

●
●

●

●●●●
●
●

●

●●●●

●
●

●

●●●●
●
●

●

●●●●
●
●

●

●●●●

●

●

●●

●●●●●

●

●

●●
●●●
●●

●

●●●●●

●

●

●●●●●
●

●

●
●
●●

●

●

●●

●

●
●●●

●

●●●

●

●

●

●●●
●

●●●

●

●●
●

●●●

●

●

●

●●●

●

●

●
●●

●

●●●

●
●

●

●●●●

●
●

●

●●●●

●

●

●

●●●●

●
●

●

●●●●

●
●

●

●●●●

●
●

●

●●●●

●
●

●

●●●●

●
●

●

●●●●

●●

●

●

●●●●

●

●

●●●●●
●

●

●●●●●
●

●

●●●●●
●

●

●●●●●
●

●

●●●●●
●

●

●●●●●
●

●

●●●●●
●

●

●●●●●
●

●

●●●●●
●

●

●●●●●
●

●

●●●●●
●●

●

●●●●●

●

●
●

●●●●●
●

●

●●●●

●

●

●

●●●●

●

●

●

●●●●

●

●●●●
●●

●●●●
●●●●
●●●
●●●●●●

●●
●

●

●●●

●
●

●
●

●

●
●

●

●

●●●
●●●●●●●●●

●●●●●●●●●●●
●●

●

●●

●●●●●●●

●●

●●

●

●
●
●●●

●●

●●

●

●●

●

●●●●

●
●●●

●

●●●●●

●●

●●●

●●●●

●●●

●

●

●●●●●

●

●

●

●●●●●

●

●

●●

●

●

●

●●●●
●●
●●

●

●

●

●

●

●

●

●

●●

●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●
●

●●●●●●

●
●

●●

●
●●●●●●

●

●●

●

●●●●●●●

●

●●●●●●●●

●
●

●●●●●

●
●

●

●

●●●
●●●

●
●

●●●●
●●●

●
●

●●●●
●●●

●
●

●●●

●

●●●●

●
●

●●●●●
●●●●●

●
●

●●●●●●●
●●

●
●

●●●●
●
●●●

●
●

●●●●
●
●●●

●
●

●●●●●
●
●●

●
●

●●●●●
●●●

●
●

●●●●●
●●●

●
●

●●●●●
●●●

●
●

●●●●●
●●●

●
●

●●●

●

●●●
●●

●
●

●●●●●●
●●

●
●

●●●●●●
●●

●
●

●●●●●●●
●

●
●

●●●●●●●
●

●
●

●●●●●●●
●

●

●●●●●

●

●

●●●

●

●●●●●
●
●●

●
●

●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●

●●

●

●

●●●

●
●
●●●●●
●●●●

●

●●●●●●●●

●

●●●●●●●●
●●●●
●●●●

●

●

●

●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●●●●
●●
●●●●●

●

●●

●

●●●●●●●

●●

●

●

●●

●●●●●●●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●

●

●●●●

●

●●●●●

●

●●●●●●●

●●●●
●
●●

●
●

●●

●

●
●●●●●
●
●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●●●●

●●●●●●●●●●

●

●●●●●

●●●●●●●●●●●●●●●●
●●●●●●

●

●

●●

●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●
●

●●

●

●●●●●●●●●●●

●

●●●
●●●●●●

●
●●

●

●

●●●

●
●●
●●
●
●

●●
●

●

●

●

●●●●●

●●

●●

●●

●

●

●●●

●

●●●●●

●●

●●●●●

●●

●●●●

●●●

●●●●

●●

●
●

●●●●

●●

●●●

●●

●●●

●●

●●●

●●

●●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●●

●

●●●

●●●

●●●●

●

●●●●

●●

●●●●

●●

●

●

●●●

●●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●

●●

●●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●●

●

●●●●●●●

●
●

●

●

●●

●●

●

●●

●

●●

●

●●●

●

●
●●●●●●●

●

●●●●●●●●●●●●●●

●●

●

●

●

●

●

●

●

●

●●●

●●●

●

●

●●●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●●

●●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●
●●

●
●

●●●●

●
●
●

●●●●

●

●

●

●●●●

●

●

●

●●●●

●

●

●

●●●●

●

●

●
●

●●●●

●

●

●
●

●●●●

●

●

●
●

●●●●

●

●

●
●

●●●●

●

●

●
●

●●●●

●

●

●
●

●●●●

●

●

●
●

●●●●

●

●

●
●

●●●

●

●●

●

●●

●

●●

●

●●●

●

●●

●

●●●

●

●●

●

●●●

●

●●

●

●●●

●

●●

●

●●●

●

●●

●

●●●

●

●●

●

●

●●●●●

●
●

●

●●●●

●
●

●

●●●●

●
●

●

●●●●

●
●

●

●●●●

●
●

●

●●●●

●
●

●

●●●●

●
●

●

●●●●●

●
●

●

●●●●●
●●

●
●

●

●●
●●

●
●

●

●●
●●

●
●

●

●●
●●

●
●

●

●●
●●

●
●

●

●●
●●

●
●

●

●●
●●

●
●

●

●

●●
●●

●
●

●

●

●●
●●

●
●

●

●

●●●
●●

●
●

●

●

●●●
●●

●
●

●

●

●●●
●●

●
●

●

●

●●●
●●

●
●

●

●

●●●
●●

●
●

●

●

●●●
●●

●
●

●

●

●●●
●●

●
●

●

●

●●●
●●

●
●

●

●

●●●
●●

●
●

●

●

●●●
●●

●
●

●

●

●●●
●●

●
●

●

●

●●●
●●

●
●

●

●

●●●
●●

●
●

●

●

●●●
●●

●

●

●

●●●
●●

●

●

●

●●●
●●

●

●

●

●●●
●●

●

●

●

●●●
●●

●

●

●

●●●
●●

●

●

●

●●●
●●

●

●

●

●●●
●●

●

●

●

●●●
●●

●

●

●

●●●
●●

●

●

●

●●●
●●

●

●

●

●●●
●●

●

●

●

●●●
●●

●

●

●

●

●●●●
●

●

●

●●

●●●

●

●●●

●

●

●

●●●
●●

●

●

●

●●●
●●●

●

●

●●
●
●●●

●

●

●●
●
●●●

●

●

●●
●
●●●

●

●

●●
●
●●

●

●

●●
●
●●

●

●

●●
●
●●

●

●

●●
●
●●

●

●

●●
●
●●

●

●

●●
●
●●

●

●

●●
●
●●●●●
●

●

●

●●●●
●

●●●
●●●
●●●●●●

●●●●

●

●

●

●●●●

●

●

●

●●

●●

●●
●

●

●

●

●

●

●●●
●●●

●●●●●

●
●●●●●

●●

●

●●●
●●●●

●

●

●

●●
●
●●●

●

●

●●

●

●

●●●●

●

●●

●

●

●●●
●

●

●

●

●

●●●
●
●

●

●

●●●
●
●

●

●

●●●
●
●

●

●●●
●
●

●

●●●
●
●

●

●●●
●
●

●

●●●
●
●

●

●

●●●
●
●●●●

●

●
●●●●
●

●

●●●●
●

●

●●●
●

●

●

●●●
●

●

●

●●●
●

●

●

●●●
●

●

●

●●●
●

●

●

●●●
●

●

●

●●●
●

●

●

●●●
●

●

●

●●●
●

●

●

●●●
●

●

●

●●●●
●

●

●

●●●●
●

●

●

●●●●
●

●

●

●●●●
●

●

●

●●●●

●●

●

●

●

●

●
●

●

●

●

●●●●
●

●

●

●●●●
●

●

●

●●●●
●

●

●

●●●●
●

●

●

●●●●
●

●

●

●●●●
●

●

●

●●●●
●

●

●

●●●●
●

●

●

●●●●
●

●

●

●●●●
●

●

●

●●●●
●

●

●

●●●●
●

●

●

●●●●
●

●

●

●●●●
●

●

●

●●●●
●

●

●

●●●●
●

●

●

●●●●
●

●

●

●●●●
●

●

●

●●●●
●

●

●

●●●●
●

●

●

●●●●
●

●

●

●●●●
●

●

●

●●●●
●

●

●

●●●●
●

●

●

●●●●
●

●

●

●●●●
●

●

●

●●●●
●

●

●

●●●●
●

●

●●●●
●

●

●●●●
●

●

●●●●
●

●

●●●●
●

●

●●●●
●

●

●●●●
●

●

●●●●
●

●

●●●●●

●

●
●●●●

●

●
●●●●

●

●
●●●●

●

●●●
●●

●

●●
●●●

●

●●●
●●

●

●●
●●●

●

●
●
●●●

●

●●
●
●●●

●

●●
●●●

●

●
●●●

●

●
●●●●●

●

●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●

●

●●●●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●
●

●

●

●●
●

●
●
●●

●

●

●●

●●●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●●●

●●●●

●

●●●●

●

●●

●
●

●●
●●

●

●●●●●●

●

●
●
●●

●●

●

●●

●

●●

●

●

●
●
●

●●●

●

●
●●●
●●
●
●●
●

●

●

●
●●
●
●
●●●
●
●
●

●

●

●●
●

●

●

●●
●

●

●

●

●
●●

●

●

●
●
●●

●●●

●

●

●

●

●

●
●

●

●

●

●●●●

●

●

●●

●

●

●

●
●

●

●●
●

●●
●
●●●●

●●●●
●
●●

●
●

●●●

●
●
●

●
●
●

●

●●●●●●●●●●●

●

●

●

●

●●

●●●●●●●●●●
●●●●●
●●●●●
●●●●●●●●●
●●●●●●●
●●●●

●
●●●●

●

●

●●

●
●

●

●

●

●

●●●●●●
●

●

●●●
●●

●
●●●
●
●●

●

●●●●●●●●●●●●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●●●
●●●●●●
●●

●●●●●●●

●

●●

●●●

●

●

●

●

●

●●●●

●

●●

●

●

●

●
●

●

●

●

●●●●●

●

●●●●●●●●

●

●●●●●●

●
●●●●

●

●●●●

●

●●●

●●●●

●

●●●
●

●
●●
●●
●●●●●●●

●
●

●
●
●

●
●
●
●

●
●●

●

●

●

●
●
●●
●●
●●

●

●

●
●●●
●
●

●●●
●
●

●
●●
●●●●●

●

●

●
●
●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●
●

●

●

●

●●●

●

●●●

●

●

●●

●

●
●
●

●

●●●●

●

●●
●
●

●

●●●

●

●

●

●
●●

●

●
●●

●●
●

●

●

●

●●●
●●●

●●●

●

●

●●

●●●

●

●●●●

●

●

●

●

●●●

●

●
●
●●
●●●●
●
●
●
●●

●

●

●

●

●
●
●
●
●
●●
●
●

●

●

●●

●●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●
●
●●●

●

●●●

●●●●

●

●●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●●

●

●●●●●●●

●

●●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●

●

●●

●

●●●●●
●

●●

●●

●

●

●●●●●●●●●●●

●

●●

●

●●●

●
●
●

●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●

●

●

●
●
●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●

●●

●●

●●●●●●●●●●●

●●

●●●

●

●●●

●

●

●●●●

●

●

●

●●●●●

●●

●

●

●

●

●

●

●

●

●

●●●●

●●●●

●●

●

●

●

●

●
●●
●●
●●

●

●

●●●●●
●
●●●
●
●
●●●
●

●
●
●

●●
●●
●●●●
●
●

●

●
●●

●
●
●
●●

●●●●●●●

●

●
●●

●

●
●
●

●

●

●

●

●

●●

●

●
●

●

●●
●
●

●●

●

●

●●●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●●●●●●●

●
●
●
●
●
●

●●

●

●
●
●
●

●

●

●

●●

●●●●

●●

●

●

●●
●●

●

●●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●

●●

●●

●●

●

●

●
●
●

●

●

●●
●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●●

●

●●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●●

●

●

●●●

●●●●●
●●●
●●●●●

●

●

●●

●

●

●

●

●

●

●●
●

●

●●●

●

●

●●

●
●

●

●●
●

●

●
●●●

●

●
●
●●

●●●●●●●●●●●●●●●

●●●●
●
●●
●
●
●
●●●●
●
●

●
●
●●

●

●

●●

●

●●

●

●●●●

●

●●●●●●

●●

●●●●●●

●●
●●
●

●
●
●●

●●●

●

●

●
●
●
●

●

●
●

●●

●●●●●●●●●●●●●
●
●
●

●●
●

●

●
●

●

●

●

●

●●●●●●
●●●●●
●●

●●

●●

●●

●

●

●

●
●
●●
●
●●
●
●●●
●
●●
●●
●
●
●
●
●

●

●●●

●

●

●●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●●
●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●●●●●

●

●

●

●

●

●
●

●

●●

●

●

●

●●●

●●●

●

●●●●●●●
●●●
●●●
●
●
●
●●
●
●

●●●●●
●●●●●
●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●●●●

●

●

●

●●

●

●

●●●●●●●●●●●●●

●

●

●

●●

●

●

●●

●
●●

●
●

●

●●●●

●

●

●
●
●●
●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●●
●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●●
●

●
●
●
●

●

●

●●

●
●
●

●

●●

●●

●

●

●

●

●●

●
●●●●●●●

●

●●

●

●

●

●

●

●●●●●

●
●

●●●●●●●●●●
●●●●
●●

●
●

●

●

●●

●
●

●

●

●
●
●
●
●

●

●●

●

●
●

●

●●●●●●

●●●

●●●●
●

●

●

●

●

●
●
●

●

●

●
●
●

●

●●●●●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●●●●●●●●●●
●●

●●●●
●●●●
●●●●

●●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●
●

●

●

●
●
●
●
●●

●

●

●
●

●●●●

●

●

●
●

●

●
●

●●●●●

●

●●

●●●
●

●●●●

●●●

●

●

●

●

●

●

●

●●

●

●●●●●●

●

●

●
●

●●

●
●
●
●

●

●

●

●
●

●

●
●
●●●

●

●

●

●
●

●

●

●

●

●

●

●
●●
●

●

●
●

●

●

●●

●

●

●●●●●●●●●●●
●●●●

●

●●●

●

●●●

●●●
●
●

●

●

●

●

●
●

●
●
●

●
●●
●
●
●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●●●

●

●
●

●●

●
●

●

●●

●●●

●

●
●

●

●

●
●
●

●

●

●●

●

●●

●●

●●
●
●

●
●
●
●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●
●

●●

●

●●

●

●

●●

●

●●●●●●

●

●
●
●
●

●

●●●●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●

●

●●

●●

●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●

●
●

●●

●●●●●●●

●
●
●

●

●●

●

●

●

●
●●
●●
●

●●●●●●

●

●
●
●●
●

●

●●●●●

●

●●●

●

●

●

●
●●●
●
●●●

●
●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●

●●●

●

●

●

●
●

●●

●

●●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●●●●●

●

●●

●●●●●●

●

●

●

●

●●●●●●●●

●

●●

●

●

●●●●●

●●

●

●

●●●

●
●
●●
●
●

●●

●

●●

●

●●

●●

●●

●

●

●

●●●

●

●●●

●

●●●

●

●●●
●
●●●

●

●●
●
●●
●●

●

●●●
●
●●●
●
●●●

●
●
●
●●

●
●

●●

●

●

●

●●●
●●
●

●
●

●●●●●

●●●●●●●●●●●●

●

●

●

●

●●

●

●

●●●●●

●

●●●●●

●

●●●●●●

●

●

●●●●●

●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●●●●●

●

●

●●●●●

●
●●

●●●
●
●
●●●●●
●

●●●●●●●●●●●
●●

●

●●●●●●●●
●●
●

●●●

●●●●

●

●●

●●

●●●●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●
●●

●●

●

●●●●●●●●●●●●●●

●

●●●●

●

●

●

●●

●●
●
●
●

●
●

●
●●
●
●

●●

●

●

●
●

●
●●
●

●

●

●●●

●●
●●●
●●●●●
●
●●●
●

●

●●
●
●

●

●●
●

●

●●
●
●
●●

●●
●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●

●
●

●

●

●

●

●

●●●●
●
●●

●

●
●
●
●
●

●●
●
●●●

●
●
●
●

●
●

●●
●
●

●

●
●●●●●●●●●●●

●

●●●

●

●●
●

●
●

●●●●●●●●●●●●●●●

●
●

●

●●
●
●●

●●
●
●●
●
●
●●

●●

●
●●

●

●
●
●

●●
●

●
●

●
●●●

●●●●●●●●●●●●●●●
●

●
●

●●●●
●●●●●●●●●
●
●●●●
●
●
●●

●

●
●
●

●

●

●
●●

●

●●●●●●
●●●
●

●

●●
●

●

●●
●

●●

●

●

●

●

●
●●
●
●

●

●●

●
●

●

●●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●
●
●
●

●

●

●●

●

●●

●

●

●

●

●

●●
●

●●

●
●

●

●

●●

●

●●●

●●

●

●
●
●
●●
●

●●

●●
●

●

●●

●●

●
●

●

●

●

●

●
●

●
●

●

●●●

●●

●

●●

●
●●●●

●●
●●
●●

●●●●●●●●●●●●●

●

●●

●
●●●
●
●
●●●●

●

●

●●

●●

●

●

●

●●

●

●

●

●●●

●

●●●●●●●●

●●●●●●●●●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●●●●●●●●●●●

●●

●●●●●●●●

●●●●●

●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●●

●

●●

●●●

●

●

●

●

●

●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●

●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●

●

●

●●

●

●

●●●

●

●

●●

●●●

●

●●●●●●●

●

●●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●

●

●

●●●

●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●●

●●

Average Memory

1e−02

1e+00

1e+02

1e+04

besteffort interactive parallel serial

M
em

or
y

in
 M

iB
 p

er
 c

or
e

(lo
g

sc
al

e)

(c) Avg. Memory Usage Distribution & Density.

●●
●

Reads

1e−04

1e−02

1e+00

1e+02

1e+04

besteffort interactive parallel serial

D
is

k
IO

 in
 K

iB
/s

 p
er

 c
or

e
(lo

g
sc

al
e)

(d) Disk I/O Reads Distribution & Density.

●●●●●●●●●●●●●●●
●●●●●●●
●●●
●●●●●
●
●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●
●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●●●●●●●

●

●●●●

●

●●●●●●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●

●

●

●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●

●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●
●

●

●●●●●●●●

●

●●●●●●●●●●●●

●●

●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●●●●●●●●●●●●●
●
●●
●
●
●

●

●●●●●●●●
●

●
●●
●
●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●
●●●
●

●
●●●

●

●

●

●●
●

●

●

●

●●●●

●●

●

●●
●

●

●●

●●

●●

●

●

●
●
●
●

●

●
●
●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●●●●●●●●

●

●●

●●

●●

●●

●●

●
●

●●

●
●

●

●

●

●

●●●

●

●●●●●●●

●

●●●●●●

●
●

●

●●

●

●●

●

●

●●
●

●

●

●●●●●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●
●

●
●
●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●
●●

●●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●
●
●

●●

●
●

●
●

●●

●

●

●
●

●●

●●
●
●

●●

●
●

●

●

●●

●

●

●
●

●●

●●
●
●

●●

●
●
●

●

●

●

●

●
●
●

●●

●

●

●
●

●

●

●
●
●
●

●●

●
●
●
●

●●

●
●
●
●

●●

●
●
●●

●●

●

●●
●
●●
●●●●●●

●●●

●●●●●●●●●●
●●●●●●●●●●●
●●●●●

●●●●●●
●●●●●
●●●●●●●●●●●
●●●●●●
●●●●●●●
●
●

●●●●●●●●●●●●

●

●
●●●
●
●
●●●
●
●
●
●
●
●
●●●
●
●
●
●

●

●
●●●●
●
●
●

●

●●●
●
●
●
●
●●●
●

●
●
●●●

●●

●
●

●

●
●
●●
●
●
●
●●●
●
●
●●
●
●
●
●

●

●
●
●●
●
●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●
●

●

●

●

●

●

●●
●

●

●●
●

●

●●
●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●●●

●

●

●●●●●

●

●
●
●●

●

●●

●

●●●

●

●

●●

●

●

●

●
●
●

●

●●

●

●●
●

●
●
●●
●●●
●
●

●●

●

●

●
●●●●

●

●

●

●●●●
●●●

●
●

●

●

●●
●
●

●●●

●

●

●

●

●

●●●

●●
●

●

●●

●

●

●

●●

●●

●

●●●

●
●

●

●

●●●

●

●●●

●

●

●●●●●●
●

●

●

●

●
●●
●●●●

●
●

●

●
●
●
●●●

●
●●

●

●

●

●

●

●●

●

●●●●●●
●

●

●●●

●
●●●

●
●
●

●

●●

●

●

●
●
●

●

●●●●●
●

●

●

●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●
●●
●●●
●
●●

●●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●

●●●

●●●

●

●

●

●●

●●

●

●

●●●

●

●

●●●●●

●

●●●●

●●
●

●
●
●●●●

●

●●

●●
●

●

●

●

●
●●●●

●

●
●

●●●

●●
●

●
●
●
●●●

●

●

●

●

●

●

●●

●

●●●●●●

●

●
●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●●

●

●●●

●●

●

●

●

●

●

●
●
●

●●●●●●●

●

●

●
●●●●

●

●
●●

●

●

●●

●
●●●●

●

●
●
●●●●

●

●

●
●●●●

●

●

●
●

●

●●

●

●
●
●

●

●

●

●

●
●

●

●●●

●

●
●

●●●●

●

●
●
●●●●

●

●

●
●

●

●

●

●

●

●
●
●●●●

●

●
●

●●●

●

●

●
●

●

●
●

●
●

●

●●●●●

●

●

●

●●●●

●

●

●
●●●

●

●

●

●

●●●

●

●

●

●●●

●

●

●●●●●

●

●●●●●

●

●
●

●

●

●●

●

●
●●●●

●

●

●

●●

●●●

●
●
●

●

●●●●

●

●
●

●

●●●

●

●

●
●●●●

●

●

●●●●●
●

●●●●●●

●
●●
●
●●●●●●●●

●

●●●●●●●●
●●●

●●●●●●●●●●●●
●●●●●●
●●
●●
●●●●
●●●●●●●
●
●

●●

●●

●●

●
●

●

●●

●●●

●

●

●

●

●

●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●●●●●●●●●
●●

●

●●●●●●
●●●●●●●●●●●●●

●●

●●●●●●●●

●

●●●●●●●●●●●
●

●

●●●●
●
●

●

●●

●

●

●●

●

●

●●

●
●

●
●●●

●

●

●

●●●

●●

●●

●●

●

●

●●

●●

●

●

●
●
●

●

●●●●●

●

●

●

●

●

●

●●●
●●

●

●●

●

●
●

●

●

●●

●

●

●●

●
●

●●●

●

●

●●●●●●
●

●

●

●●

●

●●●

●

●

●
●
●

●

●

●●●●
●
●●●
●

●●

●

●

●

●
●●●●

●

●

●

●
●

●

●●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●●

●●

●●●

●●

●●

●

●

●●●

●

●

●

●●

●

●

●

●●

●
●

●

●

●●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●

●
●

●●
●

●

●

●

●

●

●●●

●

●●

●

●

●

●
●

●●●●●

●

●

●●●●●

●
●

●
●●

●●
●
●●

●●
●

●

●
●

●

●

●

●●●
●

●

●●
●●
●

●

●●

●

●●
●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●
●●

●●

●

●●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●

●●

●

●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●●●
●●
●
●

●●●●

●●●●

●

●
●●

●

●

●

●

●

●●

●

●●

●●

●

●

●●
●●

●

●

●

●●●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●

●

●●●●

●

●●●●●

●

●●●●●●●

●●●●

●
●

●

●
●

●

●

●●●●●
●●●●

●

●
●●●●

●●●●●●

●●

●

●

●
●●●

●●●●●●●●

●

●

●

●

●
●

●●

●
●

●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●

●

●●●●●●●●●

●

●●●●●

●

●●●

●

●●●●●●●

●●

●

●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●●

●

●●●

●

●●●
●●
●

●●●●●

●
●●

●

●

●
●

●

●

●
●

●

●

●●●●●●●●●●

●

●●
●●●●●●●●●

●●●

●●●●●
●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●

●

●

●●

●●●●●●

●●●
●

●
●

●●●

●●

●●
●

●

●

●

●

●

●
●●●
●

●

●●

●●●

●●●●

●●●●●●

●●●

●●
●

●●

●

●

●

●

●

●●

●

●

●
●●
●●●●●●●●

●

●

●

●●●

●

●

●
●
●

●
●
●

●

●

●

●●
●
●

●●

●●●

●
●

●

●●

●●●●●●●●

●

●●●

●

●●

●

●

●

●●

●●●

●
●●

●

●●

●●●

●

●●

●●●

●

●

●●●

●

●●

●

●●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●●

●
●

●
●

●●

●

●

●
●●

●
●●

●

●
●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●●

●

●

●●

●

●●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●●●●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●
●●
●●

●●●●●●●●●●

●

●●

●

●●

●●

●

●●●●●●●●●●●●

●

●

●

●●

●

●●●

●

●

●●●
●●

●●

●●
●●●●●●●●●●

●

●●●●
●●●●

●

●●

●●●●●●●●●●●●

●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●

●

●
●

●
●●●
●
●●●●
●
●

●

●

●

●

●●
●
●
●●

●

●●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●●●●●

●

●
●

●
●

●

●
●

●●●●●●

●●

●●●

●
●
●

●●
●

●
●●
●

●●

●●●●●●

●●
●

●

●

●
●●

●●

●

●●●

●●●●●

●

●

●
●●

●●●

●

●

●
●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●
●

●

●●
●
●

●●

●●●●
●
●

●●

●●●●

●

●

●●

●

●

●●●
●

●●

●

●●●
●

●

●●

●

●●●
●
●

●

●

●●●●●

●●

●●●●

●

●

●

●

●

●

●●

●

●●●
●

●
●●

●

●
●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●●●
●

●

●

●

●●

●

●

●

●
●

●

●
●

●●

●
●●●

●

●

●
●

●

●

●

●●

●
●●●●

●●

●

●

●●●

●●

●

●

●

●

●

●

●
●●
●

●

●●

●●●●
●

●

●

●

●

●

●●

●
●

●

●●

●●

●●

●

●●

●●●

●
●

●

●●●

●

●

●●

●●●

●

●

●●

●●

●

●
●

●●

●●●

●
●

●●

●

●

●●

●
●

●

●●

●

●

●
●

●●

●

●

●

●●

●●

●●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●●

●

●●●●

●

●●

●●●●

●
●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●
●

●●

●

●

●

●●

●
●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●●

●●●

●

●

●
●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●●●●

●
●

●

●
●●●●

●

●

●

●

●

●●

●

●
●

●

●●●●●

●
●

●

●●●

●

●
●

●

●●●●

●
●

●

●
●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●●●●

●

●
●

●

●●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●●●

●

●

●

●

●

●

●●●●

●
●

●

●

●

●●●

●

●

●

●

●●●

●

●

●●

●●●●
●●●
●
●●
●●●●●●●●●●●●●●●●●
●●

●

●●

●

●

●
●

●●●●

●

●

●

●

●

●●●
●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●●●

●

●●

●

●●●

●

●●

●

●●

●

●

●●●
●

●
●

●

●●●●

●

●●●
●

●

●
●

●

●●

●

●●●●●●●●●●●●

●

●●●●

●

●●

●

●●●

●

●

●

●

●

●●
●●●●●●●●

●

●

●
●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●●●●●

●

●●●●●
●
●
●
●●
●
●
●●●

●
●
●●

●

●

●

●
●●

●

●●●

●
●
●

●

●

●

●

●

●●

●

●

●

●
●●

●●

●

●

●

●●●

●

●●●

●
●
●●●
●●●
●

●

●

●●

●

●●●

●

●●

●

●
●●

●●

●

●
●
●
●
●●

●

●●●

●

●

●

●

●

●

●

●
●●

●

●●●

●●

●

●●
●

●

●●

●

●

●

●●●●●

●

●●●

●●

●

●●

●

●●●

●

●

●●

●

●

●

●●●

●

●

●●

●

●●

●

●

●●

●

●

●

●●●

●

●

●

●●

●

●

●

●●●
●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●●

●●

●

●

●

●●●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●●
●

●

●

●●●

●
●
●

●

●

●

●

●

●

●

●

●●●●

●
●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●●

●

●●

●

●

●

●

●●

●
●●

●

●●●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●
●

●●

●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●●

●

●

●

●●●

●

●●●●

●
●

●

●

●

●

●

●

●●●

●

●

●

●●●●

●

●●●●●●●

●

●

●
●
●●
●

●●●
●

●●●●

●●●●●

●

●
●

●
●●
●

●
●●●●

●

●

●●●

●

●●
●

●

●
●●

●●

●

●

●

●●●
●●

●

●●
●

●

●
●●
●

●

●

●

●

●●
●●●

●

●●

●

●

●

●●

●●●

●

●●●●

●

●●●

●

●

●●●

●

●
●

●●●●

●

●●●

●

●

●

●●●

●

●
●

●

●

●●●●●

●●●

●

●

●
●●●

●
●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●●●

●●

●

●

●

●

●
●

●●●●

●

●

●

●
●●●●●●●

●●●
●●

●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●

●

●●●●●
●●
●●●

●
●

●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●●
●
●
●●

●●

●
●
●●●

●

●
●

●

●●●●
●

●

●

●

●

●

●
●
●

●●

●

●
●
●●●●●●●●●●●
●
●●●●●●●
●
●●●●●●●●●●●

●

●●
●●

●

●●●

●

●

●●●●●●●●●●

●

●●

●

●

●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●

●

●●

●

●

●

●

●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●
●●
●
●●
●●●●
●●●●●●●●●
●●●●

●

●●

●●●●●●●●●●●

●

●

●

●
●●●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●●●●●

●

●●●●●●●

●

●

●●●
●

●

●

●●●●

●

●
●

●

●

●

●

●

●●

●

●

●

●●●●

●●●●

●●●
●●●●●●●●●●●●●
●
●
●
●●●●●●
●●
●●●●●
●●
●●
●●
●●●●●●
●
●●

●
●●●
●●●●
●●●

●

●●●●●●●●●

●

●●●●

●
●
●

●

●

●
●

●●

●●●

●●

●

●●●●●●●●●●●●●●●●●
●
●

●●●●●●●●●●

●

●●●●●●●●●

●●●●●

●●●

●

●

●

●

●

●●●●

●

●
●●●
●

●

●
●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●●

●

●●●●

●

●
●

●

●

●

●●

●●
●●●
●
●●●●●●●●●●●●●●●●●●

●

●

●●
●
●

●●
●

●

●

●

●

●●

●
●

●●

●

●
●
●

●
●

●

●

●

●

●
●
●
●●●●

●

●●

●

●

●
●

●
●●
●●

●

●

●

●

●

●
●

●
●●●●
●●

●

●

●

●

●●●

●

●

●●●●
●
●

●

●

●●●

●

●●

●

●●●●●
●

●

●
●●
●●●●●●
●
●
●

●

●●●●

●
●●

●
●●●

●

●●●
●
●

●●●●●

●

●●●●●
●●●●

●
●

●

●

●

●

●
●
●●●●●●

●●

●●
●
●●●●

●●

●●

●

●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●

●●●●
●●●●●
●
●●●●
●
●●●

●●●●●
●
●●●

●●

●

●

●
●
●●●

●●●●
●

●●

●●

●●●●

●
●●●

●●●●
●
●

●

●●

●●●●
●
●●●

●●●●
●●
●

●

●

●●●
●
●

●

●●

●●●
●

●
●●●

●●●●
●
●

●

●●

●●●
●

●

●
●
●

●●
●
●

●

●
●
●●
●●

●

●

●
●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●
●

●

●●

●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●●●●●●

●

●●●
●●

●

●●●●

●

●●

●●●●●●

●

●●●●

●

●

●

●

●

●

●●●

●

●●●●

●●●●●●●

●

●

●
●
●

●
●
●

●

●●●●●●●●●●

●●●
●
●●●●●●
●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●
●●
●●●●●

●

●●●
●●●

●
●●
●
●

●

●

●●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●
●●●●●●●

●
●
●

●

●
●●●●●●●●●

●

●

●

●
●

●
●

●

●●●

●●●
●

●

●

●●●●●●●●●●●●●●

●
●●●
●

●●●●●●●●
●
●
●
●●●●●●●●●

●●

●

●

●●●●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●●

●●
●●●●●●●●●●●●●●●●●●●●
●

●

●

●●●

●

●●

●●●●●●●

●●●

●

●

●

●●

●●●●●●

●

●

●

●

●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●

●●

●

●
●

●

●

●
●

●

●

●●

●
●

●

●●
●●●●●

●●●

●●●●●

●
●●●●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●●●●

●
●●

●

●●●●●●

●

●

●●
●●●

●

●

●●●●●●●●●●●●●●●

●

●●
●●●●●●●●●●

●

●

●

●

●

●

●

●●●●●●●
●
●●

●

●●●●

●

●●

●

●●●●●●●●
●●●

●

●

●

●

●

●
●

●
●

●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●

●

●
●●●
●
●●

●

●
●
●●●●
●●

●

●

●●
●

●

●

●●●
●

●

●●
●
●●●●●●●●●●●●
●●
●
●●

●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●
●●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●●

●

●●●●
●●
●

●
●

●●

●

●

●
●●

●
●

●●●●●●

●

●

●

●

●
●

●
●

●●

●
●
●

●
●●●●●
●

●
●
●●

●●

●
●
●
●●●
●●

●
●●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●●●

●

●
●●

●

●●

●

●

●

●●

●●

●
●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●●
●
●

●

●●
●

●

●

●
●●

●●
●

●●●

●

●

●●●●

●

●

●
●

●●
●
●●

●
●

●●●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●●●
●

●

●●

●

●●

●

●●

●

●

●

●

●

●●

●

●●●

●

●
●

●

●●

●●●

●●●●●●●●●●
●●●●●●●●●●

●

●
●

●

●●

●
●
●●●●

●●●●●●●●
●

●

●●

●

●

●

●
●
●

●

●

●

●●●

●

●●

●

●●●
●●●

●

●
●●

●●●
●

●

●
●

●

●●●●●●

●●

●
●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●
●

●

●

●●●
●●●●
●●●

●

●

●

●●
●●

●

●

●

●●●●

●

●●

●
●●

●

●

●
●
●●
●
●
●

●
●

●

●●●

●
●●
●●
●●
●

●

●

●

●●●

●

●●

●●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●●●

●

●●●●●●●●

●

●

●

●●

●

●

●

●
●
●●
●

●

●

●

●
●●

●

●
●●●

●

●●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●●

●
●●

●●

●●●
●

●

●

●

●●●
●

●
●

●

●●

●
●

●●

●

●●

●

●●●

●

●

●

●
●●●

●

●

●

●
●
●●●●

●

●

●

●

●
●

●●

●
●

●●

●

●

●●

●●●●

●

●●●●●●●●●●
●
●
●

●

●

●●●●●●●●●●●●●●

●

●
●
●●

●
●●●●●
●
●●
●
●●●

●

●

●

●●
●●●

●

●
●

●

●

●

●

●

●●●●

●●

●●●●

●

●

●●

●

●●

●

●●●●

●
●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●●●●●●●●

●

●●
●

●

●●●

●

●
●●

●

●

●

●

●●
●●●●●

●●

●
●

●

●
●

●
●
●
●
●

●●

●●
●

●

●

●●
●

●
●●●●

●

●

●
●

●●

●

●

●●

●

●
●●●●
●
●●●

●

●●
●

●

●●

●
●

●

●

●●

●

●
●
●
●

●

●

●

●●●●●●●●

●

●●●●●●●

●●

●●●

●

●●●●●●●●●●●●●●●●

●

●

●
●●
●●
●

●●●
●
●

●

●

●

●

●

●

●

●

●●

●

●●●
●●

●

●●

●

●

●

●

●

●●

●

●●●●●●●●●●●●●●

●
●
●●
●●
●

●
●

●

●

●

●

●●
●
●
●●
●

●

●●

●

●
●

●●●
●
●●●●●

●

●

●
●

●

●

●●

●●●●●●●●●●●●●●●

●●
●●
●●●●●
●●●●●

●

●

●

●
●
●●

●
●
●●

●

●●
●
●●

●●
●●
●

●

●

●

●

●●

●

●

●
●
●●

●

●
●●

●

●

●●●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●
●●
●

●

●●●●
●
●●
●●●

●
●

●

●

●●

●
●

●
●

●

●
●

●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●●

●●●
●●

●●
●●
●

●
●

●

●●

●
●
●

●

●

●

●●
●●
●

●
●●

●
●

●

●

●
●

●

●

●

●●

●

●
●
●

●●●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●
●●
●

●●●●●

●

●

●●

●

●●●●●●

●●●●●

●

●

●●●●●
●●

●●

●●●●

●

●

●●

●

●●●

●

●●●

●

●●

●

●

●

●
●
●

●●●

●
●

●

●

●

●
●
●
●
●●●●

●

●

●●

●

●

●

●●●●●

●

●●

●

●

●
●●
●
●●
●
●
●●●●●

●

●

●
●●●
●●●●

●

●●
●●

●
●
●
●
●
●
●

●●

●

●●●●●●●
●●●●●●●
●●

●

●

●
●●●

●
●

●

●●●
●●●
●●
●●
●
●●

●
●

●●●●●●
●

●●

●

●
●●●●●●●●

●

●●

●

●●

●

●●

●
●
●
●

●
●
●
●
●

●

●●

●
●●
●

●●

●

●
●●
●
●●●
●●●
●●
●
●

●

●
●

●

●

●

●

●●

●●
●
●●

●

●

●

●

●

●

●
●

●●

●
●●●
●

●●●●●●

●

●●●●●●
●●●●
●●●●●
●

●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●
●

●●
●

●

●

●

●

●●●●●

●

●●
●
●

●
●●

●
●●●●
●●

●

●

●

●

●●●●●

●●

●●●●●●●●●●●●●●●

●

●
●
●●●●●●●●
●
●

●

●●●

●

●

●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●
●●
●●●

●
●
●

●●

●

●

●
●●
●
●

●

●

●

●

●●
●

●

●
●●

●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●
●

●

●●●

●
●
●

●●●●

●
●

●

●

●
●
●●
●●

●
●

●

●●
●

●

●●

●
●
●

●

●
●●
●
●

●

●

●
●
●●●●●●●●●
●●

●

●●

●

●

●

●
●●

●

●

●

●

●●●

●●

●●

●●●
●
●

●●●
●●

●

●●

●
●

●

●
●

●●

●
●
●●●●●●●●●●

●
●
●●●●●●

●●

●

●●
●

●

●●

●●

●

●●

●

●●

●●●●●●

●

●●●●●

●

●●
●●

●

●

●

●●

●

●

●
●
●
●

●●

●

●●

●

●

●

●

●

●●●●●

●
●

●●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●
●

●

●●●

●

●

●
●
●●

●

●●

●

●●

●

●●
●

●

●

●
●

●

●

●●

●

●

●

●●●●

●●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●●
●

●

●

●●

●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●
●
●

●●

●
●

●

●●
●
●●●●

●●
●●●●

●●●●●●●●●●●●●

●

●●●●●●●●●
●

●●

●

●●

●

●●
●●

●●●

●●●●
●●●●●●

●●

●
●
●
●●●●●
●●●●

●●●●●●●●●●●●

●
●

●

●

●
●
●
●

●●

●●●●●●●●

●

●●
●●●
●

●

●

●

●

●●

Writes

1e−04

1e−02

1e+00

1e+02

1e+04

besteffort interactive parallel serial

D
is

k
IO

 in
 K

iB
/s

 p
er

 c
or

e
(lo

g
sc

al
e)

(e) Disk I/O Writes Distribution and Density.

Fig. 4: Jobs Consumption analysis for the workload scheduled on the Gaia cluster
between May 22th, 2014 and August 19th, 2014.

types of application. As we can assume, interactive jobs tend to have a very
low CPU utilization. However what we were not suspecting is the low CPU
utilization of parallel jobs. Almost all jobs have an average CPU utilization
under 15%. Above that are only some outliers. In Figure 4c, we note that only

interactive jobs have a low memory usage. In this figure, the average memory
usage is given per allocated core thus the global memory used by the job is
depending on its size. We also observe that besteffort jobs have a very stable
and predictable memory usage (on the order of 100MiB per core) while parallel
and serial jobs have more variations. Finally from Figures 4d and 4e, we can
spot that disk IO and in particular reads accesses have a very wide scale and
spread distribution. We also witness that parallel jobs have the higher IO write
values for median and density but lower IO read values. Thus parallel jobs tend
to write more than others but read less.
Overall, the jobs that use the most the resources belong to the serial class. A very
high proportion of these use around 100% of CPU but also a fairly high amount
of memory (on the order of the GiB). What is quite surprising is the relatively
low CPU utilization of parallel jobs. For a vast majority of the jobs, this value
is around 5%. This is counterbalanced by a relatively high memory usage (on
the order of the 100th of MiB per core) and for a lot of them, a high rate of
disk writes. Moreover, this analysis exhibits the importance of the user factor:
as little as 8 users among the 56 that ran parallel jobs during the considered
period, account for an area of 80% of parallel jobs.

3.3 Classification of Jobs Consumption

As job consumption values distribution takes various forms from centered around
the median to really sparse and with a wide range, we prefer here to adopt first a
classification approach instead of using regression techniques to train the Evalix
predictor. This preliminary step is expected to make the training easier with a
better accuracy of the predictions. Each consumption metric will be divided into
several classes of values and thus, the learning will be done on these classes and
not on the continuous values. For the clustering of data, we chose to divide each
consumption metric into four classes as depicted in Table 2.

The CPU consumption data was clustered linearly regarding its level CPU
usage. For memory consumption, we applied a logarithmic clustering of the av-
erage and maximum memory usage; same for disk IO consumption (reads and
writes) but given on average per second. Moreover, an expert knowledge based
approach was chosen instead of automatic clustering algorithms since it was
giving a stronger semantic meaning to classes. In particular, the logarithmic ap-
proach enables to compare the jobs based on their order of magnitude for mem-
ory usage or disk access, which is more suitable regarding the distribution of
the resource usages. We compared our approach with three unsupervised learn-
ing classification methods: k-means, hierarchical trees clustering and gaussian

CPU Memory Disk IO
Class 1 0 to 25% up to 10MiB up to 10KiB/s
Class 2 25 to 50% from 10 to 100MiB from 10 to 100KiB/s
Class 3 50 to 75% from 100 to 1GiB from 100 to 1MiB/s
Class 4 75 to 100% above 1GiB above 1MiB/s

Table 2: Clustering classes for consumption metrics.

User Average Consumption # of Users

CPU Intensive 11
CPU and Memory Intensive 7
CPU and IO Intensive 1
Memory Intensive 15
Memory and IO Intensive 3
IO Intensive 4
All Resources Intensive 1
Low Resource Usage 10
Medium Usage – Unclassified Users 54

Table 3: User Classification based on Average Resource Usage over the Jobs Monitoring
Period (84 active users) excl. interactive jobs.

mixtures. None of them was satisfying enough compared to our naive manual
clustering approach: Hierarchical trees clustering gives although too much (over
10) or too few classes (only 2), depending on the level of intra-class heterogene-
ity chosen. Gaussian mixtures led to similar problem and when the number of
classes is limited to a reasonable number (between 4 to 8), a few very dense
classes are produced while others are very sparse. Finally, the k-means cluster-
ing also reproduces the same problem with very sparse classes.
To get back at our first initial question: are there some typical user profiles that
we could extract from the observation of the jobs? It is now easy to detect some
classes of users that have always the same usage pattern. We define that, if
on average a user belongs to classes 3 or 4 for a given consumption metric, he
uses intensively the resource. However, if the maximum class attained in all this
user’s jobs is 1 or 2, we define his use of the resource as low. Thus a user highly
relying on several resources will be marked as so and a user consuming lowly all
the resources will be categorized as having a low resource usage. We have to be
careful not to take into account interactive jobs, these being debugging or setup
jobs, they do not reflect an application behavior. Applying this methodology on
the jobs consumption classes gives us the user classification presented in Table 3.
What is satisfying is that among 84 active users, 30 of them have a stable be-
havior and can be classified very simply. It is also interesting that a total of 10
users were identified as lowly using all the resources. The area of their jobs only
accounts for 3.12% of the total job area but with an average CPU usage of 18%
which cause a loss in CPU time of more than 5 years. As for the 54 users that
could not be classified with the above methodology, either they have a stable
behavior but their jobs are mixed between different resources consumptions or
they run applications with different resource usage patterns. For instance, the
top 3 users on the year 2013 fall into this "Unclassified" category yet we are
now able to better understand their profile. Concerning the first two users who
had an overall low CPU usage, one of them has most of his jobs being composed
of a medium to low consumption on all the metrics and few jobs with a high
CPU usage. On the data observed from this user’s jobs we could not see any
correlation between the CPU usage and memory or disk usage. What is the most

probable is that his jobs are not belonging to one particular class but correspond
to a mixed usage patterns. The second user seems to have two kinds of jobs, one
with a very high CPU usage and a moderately high memory usage, and another
type, which represent most of his workload, shows a very low CPU and memory
usage pattern. In all his jobs, the volume of disk reads and writes is very small.
What is very interesting with this user’s jobs profile is that their memory usage
is directly correlated with their CPU usage. We can be quite confident that we
are in presence of a user whose workload is composed of two distinct types of
jobs. For the third user who was showing a high CPU usage on the Figure 3,
there are probably more than two job classes. For the CPU usage, 60% of his
jobs belong to class 1 and 32% of his jobs are of class 4, but despite the CPU
class we also witness different memory usage patterns (with low and high usage)
that are not correlated with the CPU usage. However, what is well visible for
this user is the temporal correlation of the consumption. Indeed, this user’s jobs
that are submitted within a short time frame tend to have a very similar CPU
or memory usage. This is a very interesting property that could be useful in an
online classification. More generally, we need a more advanced mechanism to
assort the Unclassified jobs consumption, in particular to take into account not
only the user name but also all the job input parameters. That’s the object of
the machine-learning approach proposed in the next section, with the idea that
by perusing the history, we will be able to predict all future job consumption
classes based on user query to the RJMS.

4 A Supervised Learning Algorithm for the Complete
Prediction of Job Resource Consumption

Several supervised learning techniques coexist in the literature. Among the most
used ones are Neural Networks and SVM algorithm [14]. Although they differ
in their mechanism, they can both be used for data classification and regression
analysis. In [15], the comparison between both techniques revealed that SVM
is generally more efficient. More precisely, at the price of a higher computation
time, SVM is able to compute models that generate predictions with a lower
error rate. As the training of our models is done offline from a trace extraction,
models computing time is not a constraint and we prefer the approach that gives
the best results. To perform the supervised learning and train the SVM-based
predictors on jobs consumption data, we choose the reference implementation
proposed in the libsvm [16] library (version 2.6).

4.1 Metrics for Machine Learning Performance Assessment

In our previous classification of jobs consumption, a classification of data within
four classes has been chosen to have a finer evaluation of the consumption. In-
deed, a two-class classification seemed too restrictive as it would only tell if a
given resource usage was either high or low. With four classes we have the pos-
sibility to express more precisely at which level is the resource consumption.

Nevertheless, SVM is originally designed for binary classification problems. In
consequence, our considered multiclass classification problem needs to be trans-
formed to a form of binary classification. Generally this is done either with a
one-against-one or a one-against-all voting scheme. The first method decom-
poses the original problem into several two-class classification problems. The
second one treats each class separately and data either belongs to the class
or not the class (i.e. any of the other classes). In a study comparing multiclass
SVM problems for machine learning [17], it was shown that among several voting
scheme, the one-against-one technique is commonly seen as the most suitable.
Consequently, this approach has been considered for Evalix predictors. Also,
the usual classification performance indicators are not useful. For example sensi-
tivity, specificity and likelihood are meant to be calculated for two classes only.
In [18], the authors proposed three performance indicators that can be used for
the evaluation of multiclass classifiers:

1. Accuracy, which gives the proportion of observations that were correctly
classified. Derived from the confusion matrix, the multiclass accuracy is the
average of the accuracies obtained from each class. This metric provides the
information retrieval rate performed by the learning.

2. Area Under the ROC Curve (AUC) which comes from the radiologic
community to judge the discrimination ability of statistical methods. The
AUC measures the probability to correctly classify a random sample.

3. Cohen’s kappa measure of agreement. This indicator aims to compensate
for classifications that may be due to chance. In [19], the use of Kappa is
proposed as a standard meter for measuring the accuracy of all multi-valued
classification problems. A kappa value over 40% is generally considered to
be a moderate agreement and over 60% a good agreement.

In the context of Evalix predictors, the above three metrics were considered
as complementary performance measures. On the one hand, while the accuracy
remains the most widely used indicator due to its simplicity, it was showed in
[20] that this metric alone can be misleading under skewed class distribution,
which is the case for some data in the present study. On the other hand, the
kappa metric suffers from several undesirable effects: first, kappa may be low
even though there are high levels of agreement and that individual ratings are
accurate [21]. Then, and that’s more problematic in our case, its value is influ-
enced by data distribution and as a result, kappa values should not be compared
across studies [22]. As regards the AUC evaluation, we use a generalized pairwise
comparison approach as proposed in [23]. Given the inherent advantages of this
metric [24] (better standard error as the number of test samples increases etc.),
AUC will remain our most important evaluation criterion with precedence over
the accuracy and kappa indicators.

4.2 Training and Evaluating the Models

Input Data Selection. Mandatory information to submit a job in OAR RJMS
is: user name, submission queue, number of resources asked, maximum time

requested (or walltime), type of job (interactive or batch). Using the information
on OAR configuration on the cluster, we are able to determine also the class of
the job (besteffort, interactive, parallel or serial) so we can add this information
in the training. Iteratively we tested the prediction results in function of the job
characteristics used as input in the learning. The best results obtained, which
are presented later in this article, used as learning input the user name, the job
submission queue, the number of resources reserved, the job walltime,
the job type, whether the job was an advance reservation or not and the job
class. For instance, the job name (which is optional in OAR) was of no interest
for the training. Actually we got worse results with the trainings that included
this information than the ones that did not. The explanation is quite simple:
26% of the jobs have no name, and for those who have, these names reflect for
many user either the version of the code run or the application input parameters.
This means that many jobs have different names that slightly differ but actually
correspond to the same job with different input parameters. In consequence, this
information disrupts the learning process. Based on the information given by the
user at submission time, we train one predictor per consumption metric. This
means that from the history of the input parameters of each job, associated with
their resource consumption, we compute the support vectors and the models that
will describe this relationship. Thus we will have five consumption models: CPU
utilization, average memory, maximum memory, disk IO reads and writes; each
computed from jobs input parameters.

Finding the Best Training Parameters. The performance of SVM is very
dependent on the choice of parameters [25]. To ensure a good learning of the
consumption data we evaluated two of the most used kernels: polynomial and
RBF (radial), and for each of them using a grid search to determine the best
hyper-parameter set. For both kernels we evaluated the error rate and dispersion
with a gamma between 10(−3:3) and a cost between 1 to 5. For polynomial kernel
we tested a degree between 1 to 3. With the best parameter sets for each kernel
and for each model, we found that the polynomial kernel performed better than
RBF during the prediction evaluation (slightly better Accuracy, but 1 to 2%
better AUC and Kappa). Thus we present only the results for the polynomial
kernel. The best parameter set for our classification problem was thus a degree 3
polynomial kernel, with a gamma value of 1 and a cost of 2. This set gave us an
error rate of 0.179 and a dispersion of 0.007. Since our data sample is relatively
large (over 50,000 samples), a test set of 10% of data size and a cross-validation
technique at training phase is recommended [26] to ensure a low variance of the
results. Thus for the training of our models we first extract 10% of data that
will be used as test data. Then, using the best parameters we train our models
on the remaining 90% using a 10-fold cross validation with a validation set of
10% at each fold, then we also compute the predictive accuracy of the models
on their respective test sets. This gives the results presented in Figure 5 and
Table 4. The 10-fold cross validation ensures statistically stronger results than

3039

76

29

42

30

100

13

8

6

6

410

144

323

289

149

521

537

71

43

16

89

1982

303

5

88

161

1769

62

8

5

12

34

502

61

55

26

56

206

45

3

102

145

3805

91

9

6

9

64

4162

206

131

103

16

31

11

1

15

107

221

24

17

4

22

114

2340

179

130

30

47

212

5

0

64

888

1157

26

16

6

14

71

CPU Mem Avg. Mem Max.

Reads Writes

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4
Actual

P
re

di
ct

ed

0.00

0.25

0.50

0.75

Prediction
Level

Fig. 5: Test Data Confusion Matrices.

the test evaluation itself as the process of selecting a test data set and comparing
it with a train data set is done 10 times on disjoint sets.

Models Evaluation. Figure 5 presents the confusion matrices of the classifica-
tion of test data for each of the five consumption models. On the x-axis are the
actual classes values. On the y-axis are the predictions. The diagonal in the con-
fusion matrices represent the jobs that were correctly classified by the predictor
while off-diagonal elements are those that are misclassified by the predictor. The
higher the diagonal values of the confusion matrix the better it is, since it indi-
cates many correct predictions. The prediction level presents in a scale of grey,
for a given class the rate of job classifications. What we observe is that generally
the predictions are accurate: the darker cells of the matrix (corresponding to
the higher classification rates) are located on the diagonal. However, we can also
observe that even though the successful classification rate is high, the reverse is
not always true. This means that for a given predicted class, the proportion of
jobs that actually were belonging to this class can be low. For example, in the
Disk Writes model, over all the jobs predicted as class 2, 179 were belonging to
class 1, 212 to class 2, 888 to class 3 and 6 to class 4. In this example, only 16.5%
of the jobs that were predicted as class 2 were actually belonging to class 2.
In order to perform the evaluation of the models taking into account this phe-
nomenon, instead of simply looking at the confusion matrices, we also use the
earlier defined performance indicators, with the results depicted in Table 4. It
shows the model accuracies of the 10-fold cross validations along with test data
evaluation. Even though the 10-fold cross validation is statistically stronger, the
evaluation on test data is also interesting as it enables to compute not only the
model accuracies but also the other performance indicators AUC and kappa.

Test Data
Model 10-fold Accuracy Accuracy AUC kappa
CPU 79.4% 78.5% 75.6% 60.8%
Mem.Avg. 83.4% 87.3% 81.1% 73.2%
Mem.Max. 88.3% 93.8% 78.4% 68.8%
Writes 71.3% 72.9% 78.1% 57.5%
Reads 87.0% 87.3% 70.6% 53.4%

Table 4: Accuracy Values of Trained Models and Test Data Prediction Scores.

The cross validation shows a good accuracy for the five models, around 80 to
88% of the jobs are correctly classified. The best accuracies are for the Memory
and disk Reads models, while the CPU and disk Writes show a slightly worse
accuracy. The accuracies computed from test data are, for all the models except
CPU, seemingly higher than the ones obtained from the cross validation, this
illustrates why the cross validation is very important for a stronger evaluation
of the model. Test data AUC values are quite good, the probability to correctly
classify a sample from this set is around 80% for Memory and Disk Writes, 75%
for CPU and 70% for disk Reads. It could be counter-intuitive that disk Reads
has the lowest probability even though it has one of the highest accuracies. In
fact this comes from many jobs from the test data set belong to class 1 and were
actually classified as class 1, this gives a very good diagnostic rate for the class 1.
However this is not necessarily the case for the other classes, in particular class
2 and class 3. This is an example of the influence of data distribution skewness
on the accuracy value. It is the same phenomenon for CPU that also shows a
high density of jobs in class 1 correctly classified but class 4 shows a less good
diagnostic rate. This perfectly highlights the interest of AUC over the sole accu-
racy as a performance indicator. For the kappa indicator, the best performance
is obtained from the CPU and Memory models. Performance indicators for the
different models evaluated on test data showed quite good results. Accuracy,
AUC and kappa were giving fair to good scores for each model and the 10-fold
cross validation accuracies were still remaining good. As the statistical proper-
ties of the cross validation ensures a more reliable accuracy evaluation, we will
compute the others indicators with the same method from the full data set.

4.3 Evaluating the Predictions on the Full Data Set

To evaluate deeper the performance of the models computed in the previous
section and to ensure a stronger statistical result, we split the initial data set
into 10 extracts of 10% of its size.

Each of these extracts will be used as different test sets to evaluate the
prediction performance. By this means we will mimic the 10-fold cross validation
process that was used in the predictor training phase. Thus the performance
evaluation of the predictions is not computed from a test set extract as was
done for the training validation, but on different subsets that cover the full data.
For each test set and for each metric we compute the Accuracy, AUC and kappa.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

CPU Memory
(Avg.)

Memory
(Max.)

Reads Writes

V
al

ue
indicator

Accuracy
AUC
Kappa

Fig. 6: Model Prediction Evaluation Scores.

The result of the performance indicator averages along with the 95% confidence
intervals obtained are presented in Figure 6. On average the model accuracies
are very good: either close to or above 80%, except for Disk Writes model that
shows a lower accuracy of 71%. This corresponds to an information retrieval
of 71% to 89%, computed solely from the information given at the submission
time of the job. For CPU and Memory models the Cohen’s kappa indicator is
above 60% which is considered as a good value. For Disk Reads and Writes,
the value is lower than for the others but is still over 40% which is considered
as an acceptable kappa value. In the same time for each of the five models,
the AUC indicator shows a fair to good probability to correctly predict the
resource consumption class of the jobs. We remind that, for multiclass problems
the AUC shows interesting statistical properties and lower dispersion regarding
other indicators. This holds particularly when dealing with large samples, as is
our case. This is why we chose this indicator as our main evaluation criterion.
For the CPU, Memory and disk Writes models the multiclass AUC is larger
than 75% which corresponds to a good prediction score. For the disk Reads
model the AUC is 70% which is still a fair value. Considering the fact that we
are dealing with a multiclass problem and that we have four possible classes,
a random prediction would give a probability of 0.25 for each class. Thus, a
probability of having an accurate prediction being between 0.7 and 0.8 is a
good score. We evaluated our five multiclass models with three different criteria:
the accuracy which gives the amount of information correctly predicted, Cohen’s
kappa that compensates for predictions made by chance and the AUC which gives
the probability to correctly classify a random sample. The three performance
indicators gave us a good overall performance of our consumption models. The
Disk Reads model in spite of a high accuracy is the one that shows the lowest
prediction score considering the AUC (71%) and kappa (54%) values but is still
considered as having a fair prediction score.Based on these observation we can
say that the information provided by the user at job submission time is already
a reliable source of information to predict the resource consumption of a job,
which raises many scheduling optimization possibilities.

5 Related Work

The idea of using machine learning techniques, regressions and history analysis
to predict the jobs characteristics based on their input parameters as already
been addressed in several works.

In [27], two bioinformatics applications were used as benchmarks for an em-
pirical assessment of the suitability of several machine learning techniques for
the prediction of the size and time used by the jobs. In [28], Tsafrir et al. used
predictions of job runtimes to correct user estimations. They showed that using
the user estimated runtime of the job as a kill-time and using their proposed pre-
dictions as a runtime estimate, enabled to propose a simple scheduler respecting
FCFS and EASY properties but with significant improvements in performance,
predictability and accuracy. The generated prediction of job runtime was simply
an average of the runtimes of the last two jobs by the same user. They also
highlighted the importance of using recent data for predictions rather than a
long history. In a similar work by Smith et al. [29], four workloads from the
PWA were used to study the characteristics of the jobs resource requirements
to the RJMS to predict application runtimes. The jobs characteristics used for
the predictions were the job type (batch or interactive), submission queue, user
name, number of nodes requested, among others, then used a genetic algorithm
to find job templates used for the predictions. This method resulted in prediction
errors of 40 to 60 percent of mean run times on the four workload studied which
was a good improvement (14 to 60% lower error) regarding previous works [30]
where classifying jobs characteristics used for the predictions were user name,
parallelism level and submission queue. The approach used by Smith et al. using
more criteria for the predictions was more efficient.
However, in spite of a wide literature on job runtimes prediction based on the
jobs characteristics at submission time, very few job address the study of the pre-
diction of jobs resource consumption. In [31], the authors used four application
benchmarks, each corresponding to a particular resource consumption pattern:
CPU, Memory, IO, Network. With the profiling of these applications, using the
Ganglia monitoring system and ran within a Virtual Machine (VM), they trained
a 3-Nearest Neighbor classifier. This classifier is to be used later to categorize
a given application into CPU-bound, IO-bound, Network-bound or Idle. Based
on this, around ten real world applications and benchmarks are classified and
this classification is used as an input to an ad-hoc scheduler on a small cluster
of workstation. They showed that the knowledge of the applications resource
requirements enabled the scheduler to perform a better system throughput of
about 22% by not scheduling applications with the same consumption pattern
on the same nodes. Our work differs from this as we did not use a set of few
benchmarks for the training of the predictor but we analyzed a real 3-month
trace of our own users’ job consumption. To the best of our knowledge, the only
analysis of the jobs resource consumption on a large trace from a production
HPC cluster was from our previous work [5]. By using the analysis of the work-
load coming from our own facility instead of using benchmarks, we remove the
bias of training with applications unadapted to our users’ workloads. We also

guarantee that data used for classification and prediction is realistic while more
accurate predictions of the future jobs consumption are ensured.

6 Conclusion

In this work and in the context of the Evalix project, we collected, analyzed and
classified a trace of all the jobs resource consumptions during a period of three
months on a production HPC cluster. The outcome of this work is threefold.
First, the analysis of the resource usage by the jobs depending on their class
enabled to differentiate different kind of resource needs. Interactive jobs have a
very low CPU and memory usage but can have high IO usage, besteffort jobs
are very CPU intensive with few IO and medium memory usage and serial jobs
are using the resources quite intensively.
Then, the classification of the jobs regarding the CPU, memory and disk IO
consumption enabled to characterize the activity of 20 of the users active at
that period (24% of the total number), whose applications are always of the
same type. We classified these users as being intensive in one or several of these
metrics: CPU, memory, disk IO. We also identified 10 users (or 12% of the total
number) that always use very few resources. The CPU time loss caused by the
activity of these accounts is in terms of years.
Last, we build a consumption model based on the classification and trained a set
of predictors based on the jobs input parameters. We validated our prediction
models with the comparison of three criteria and showed that the information
retrieval rate is between 71% and 89%, and the probability of predicting the
correct class is quite high: from 0.7 to 0.8.
These results lead to several optimizations of the RJMS and the scheduling.
Firstly, the most immediate optimization is to benefit from the knowledge of the
class of the job to make a scheduling aware of jobs resource needs, as proposed
in [31]. The principle was simply to not schedule applications with the same
consumption pattern on the same nodes and this enabled to perform a better
system throughput. By not scheduling several serial jobs on the same resources,
or by mixing on the same resources interactive and besteffort jobs (which show
complementary patterns), this will positively impact the jobs. Moreover, the
preliminary classification of the jobs is done based on an expert knowledge ap-
proach, however it will be interesting as a future direction to evaluate fuzzy logic
algorithms to better handle uncertainties that come from the data dynamics.
Secondly, the prediction of the consumptions at job submission time will enable
to refine the scheduling aware of jobs resource needs. With the prediction, the
scheduling will be able to load balance the jobs on the heterogenous resources to
obtain a better performance and energy efficiency. The predictor needs to be up-
dated frequently and integrate a two-level prediction. First compute a prediction
from a consumption model derived from the recent activity on the cluster, i.e.
from the last months or weeks. Then for jobs that cannot be predicted by this
means, to use a larger model containing an annual history of jobs consumptions.
Finally, with the analysis of the job resource consumptions, one can compute the

real cost of the jobs of the users on the platform. Moreover, most recent sched-
ulers embedded in the RJMS use fair-sharing strategies to avoid the monopoly
of the resources by the largest users or to grant more resource hours or higher
priorities to a certain group of users. This real usage cost must be balanced by
the resource request provided by the user at submission time. This would give
a usage information that, integrated into the fairness score, will enable the user
to pay the right price for his computation and to get a feedback of his behavior
on the platform.
With the ability to automatically evaluate and characterize HPC workload and
user patterns, and with a model of the cost of jobs, the Evalix framework will
provide a highly efficient usage in terms of resources and infrastructure costs,
along with a better adaptation of the jobs to heterogeneous resources. More
precisely, our study offers new insights to guide the future partitioning of the
computing platform: it is now possible to define in an accurate manner sev-
eral sets of computing resources that will fit the analyzed heterogeneous usage
patterns. Coupled with a wrapper at the RJMS level that schedules the incom-
ing jobs according to their corresponding partition, substantial gains can be
obtained, whether at the level of the computing of energy efficiency. Our first
experiments based on a naive trace replay simulator reveal a potential energy
efficiency improvement between 5 to 10%. Part of our short-term perspective for
this work consists in consolidating these results and integrating the proposed
classification/prediction scheme within the RJMS of our HPC platform to eval-
uate experimentally its effectiveness. Another mid-term objective is related to
the extension of our work to a more accurate temporal analysis of the collected
traces, to better take into account the user pattern changes over sliding period
of time.

Acknowledgments: The experiments presented in this paper were carried out
using the HPC facility of the University of Luxembourg. Many thanks are also
due to all those who participated in collecting and distributing the logs available
through the PWA and used in Table 1.

References

1. Lublin, U., Feitelson, D.: The workload on parallel supercomputers: Modeling the
characteristics of rigid jobs. Journal of Parallel and Distributed Computing (2001)

2. Feitelson, D.: Workload modeling for performance evaluation. In: Performance
Evaluation of Complex Systems. Volume 2459 of LNCS. (2002) 114–141

3. Feitelson, D., Jettee, M.: Improved utilization and responsiveness with gang
scheduling. In Feitelson, D., Rudolph, L., eds.: JSSPP. Volume 1291 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg (1997) 238–261

4. Cao, J., Zimmermann, F.: Queue scheduling and advance reservations with cosy.
In: Parallel and Distributed Processing Symposium. (2004) 63

5. Emeras, J., Ruiz, C., Vincent, J.M., Richard, O.: Analysis of the jobs resource
utilization on a production system. In: JSSPP. LNCS. Springer (2013)

6. Varrette, S., Bouvry, P., Cartiaux, H., Georgatos, F.: Management of an Academic
HPC Cluster: The UL Experience. In: Proc. of the 2014 HPCS conference. (2014)

7. Capit, N., Costa, G.D., Georgiou, Y., et al. A batch scheduler with high level
components. CCGrid (2005) 776–783

8. Wolter, N., McCracken, M.O., Snavely, A., et al. What’s working in hpc: Investi-
gating hpc user behavior and productivity. CTWatch Quarterly 2 (2006)

9. Feitelson, D.G., Tsafrir, D., Krakov, D.: Experience with using the parallel work-
loads archive. Journal of Parallel and Distributed Computing 74(10) (2014)

10. Feitelson, D.: Parallel workload archive
11. : Colmet. [online] https://github.com/oar-team/colmet
12. : Linux Kernel. [online] https://www.kernel.org/ — Taskstats, Cgroups
13. Bailey, D.H.: Nas parallel benchmarks. Springer (2011)
14. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3) (1995)
15. Duan, R., Nadeem, F., Wang, J., Zhang, Y., Prodan, R., Fahringer, T.: A hybrid

intelligent method for performance modeling and prediction of workflow activities
in grids. In: Proc. of the 2009 CCGRID conference. (2009) 339–347

16. Chang, C.C., Lin, C.J.: Libsvm: A library for support vector machines. ACM
Trans. Intell. Syst. Technol. 2(3) (May 2011) 27:1–27:27

17. Hsu, C.W., Lin, C.J.: A comparison of methods for multiclass support vector
machines. Neural Networks, IEEE Transactions on 13(2) (Mar 2002) 415–425

18. Szollosi, D., Denes, D.L., Firtha, F., Kovacs, Z., Fekete, A.: Comparison of six
multiclass classifiers by the use of different classification performance indicators.
Journal of Chemometrics 26(3-4) (2012) 76–84

19. Ben-David, A.: Comparison of classification accuracy using cohen’s weighted
kappa. Expert Systems with Applications 34(2) (2008) 825 – 832

20. Provost, F.J., Fawcett, T., et al.: Analysis and visualization of classifier perfor-
mance: Comparison under imprecise class and cost distributions. In: KDD. Vol-
ume 97. (1997) 43–48

21. Uebersax, J.S.: A generalized kappa coefficient. Educational and Psychological
Measurement 42(1) (1982) 181–183

22. Feinstein, A.R., Cicchetti, D.V.: High agreement but low kappa: I. the problems
of two paradoxes. Journal of Clinical Epidemiology 43(6) (1990) 543 – 549

23. Hand, D., Till, R.: A simple generalisation of the area under the roc curve for
multiple class classification problems. Machine Learning 45(2) (2001) 171–186

24. Bradley, A.P.: The use of the area under the {ROC} curve in the evaluation of
machine learning algorithms. Pattern Recognition 30(7) (1997) 1145 – 1159

25. Duan, K., Keerthi, S., Poo, A.N.: Evaluation of simple performance measures for
tuning {SVM} hyperparameters. Neurocomputing 51(0) (2003) 41 – 59

26. Guyon, I.: A scaling law for the validation-set training-set size ratio. AT&T Bell
Laboratories (1997)

27. Matsunaga, A., Fortes, J.A.B.: On the use of machine learning to predict the time
and resources consumed by applications. In: CCGrid. (2010)

28. Tsafrir, D., Etsion, Y., Feitelson, D.: Backfilling using system-generated predic-
tions rather than user runtime estimates. Parallel and Distributed Systems, IEEE
Transactions on 18(6) (June 2007) 789–803

29. Smith, W., Foster, I., Taylor, V.: Predicting application run times using historical
information. In Feitelson, D., Rudolph, L., eds.: JSSPP. Volume 1459 of LNCS.
Springer (1998) 122–142

30. Gibbons, R.: A historical application profiler for use by parallel schedulers. In:
JSSPP. Volume 1291 of LNCS. Springer (1997)

31. Zhang, J., Figueiredo, R.: Application classification through monitoring and learn-
ing of resource consumption patterns. In: IPDPS. (April 2006)

https://github.com/oar-team/colmet
https://www.kernel.org/
https://www.kernel.org/doc/Documentation/accounting/taskstats.txt
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt

	Evalix: Classification and Prediction of Job Resource Consumption on HPC Platforms *-0,5em

