#!/usr/bin/env Rscript library('ggplot2') library('ggthemes') library('tidyverse') library('repr') library('jcolors') library("reticulate") args <- commandArgs(trailingOnly = TRUE) #setwd(source_dir) use_python("/mnt/lustre01/work/ku0598/k202107/software/install/python/3.8.0/bin/python3", required=T) source_python("/work/ku0598/k202107/git/mistral-job-evaluation/scripts/jupyter/r_visual_jobs#pickle_reader.py") global = list() global[['source_dir']] = '/work/ku0598/k202107/git/mistral-job-evaluation/data/eval_20200117' global[['eval_dir']] = '../evaluation' global[['fig_dir']] = sprintf('%s/figures/job_visualization', global[['eval_dir']]) global[['key']] = 22897682 config = list() #config[['crypted_jobid']] = 4296426 config[['crypted_jobid']] = strtoi(args[1]) config[['jobid']] = bitwXor(config[['crypted_jobid']], global[['key']]) config[['cat_fn']] = sprintf("%s/600/cats/%s.json", global[['source_dir']], config[['jobid']]) config[['raw_fn']] = sprintf('%s/600/jobdata/%s.pkl', global[['source_dir']], config[['jobid']]) graph_config = list() # Colorized entities # "name" : file systems # "host" : compute nodes # "metric" : I/O metrics graph_config[['cols']] = c('metric', 'host', 'name') #graph_config[['cols']] = c('host', 'name') # Enable views #'default', 'jscore', 'nscore', 'mscore' graph_config[['views']] = c('jscore', 'default', 'nscore', 'mscore') #graph_config[['views']] = c('default') # Set at nth position a label graph_config[['x_breakpoint_interval']] = 5 # Segments size in minutes graph_config[['seg_size']] = 10 rename_metrics <- function(data) { data['metric'] <- lapply(data['metric'], gsub, pattern = "host.lustre.", replacement = "", fixed = TRUE) data['metric'] <- lapply(data['metric'], gsub, pattern = "stats.", replacement = "", fixed = TRUE) data['metric'] <- lapply(data['metric'], gsub, pattern = ".bytes", replacement = "_bytes", fixed = TRUE) data['metric'] <- lapply(data['metric'], gsub, pattern = ".calls", replacement = "_calls", fixed = TRUE) return(data) } visualize_categories <- function(gconf, cconf, data, view, col, x_breakpoints) { out_dir = sprintf('%s/%d_%d', gconf[['fig_dir']], cconf[['jobid']], cconf[['crypted_jobid']]) dir.create(out_dir, recursive=TRUE) # Set legend title if (col == 'host') { gtitle = 'Node' } else if (col == 'metric') { gtitle = 'Metric' } else if (col == 'name') { gtitle = 'File system' } # The palette with black: #cbp2 = c("#000000", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7", "#999999") # General plot p <- ( ggplot(data, aes_string(x='bin', y='score', fill=col)) #+ geom_bar(stat='summary', fun.y = "mean") + geom_bar(stat='identity') + scale_x_discrete(breaks=x_breakpoints) #+ scale_fill_manual(values= cbp2) #+ geom_line(data=dat,aes(x='rmin', y='value', color="Second line")) + guides( fill = guide_legend(title=gtitle, nrow=15) ) + ylab('JScore') + xlab('Runtime in minutes') + theme_linedraw() #+ theme_classic() + theme( #guide_legend.title = element_text('File system'), #element_blank(), #legend.text=element_text(size=6), legend.spacing.y = unit(0, 'cm'), #legend.spacing.x = unit(0, 'cm'), legend.text = element_text(size=8, margin = margin(t = 1)), strip.text.x = element_text(size = 8, color = "black"), strip.text.y = element_text(size = 8, color = "black"), legend.key = element_rect(size = 1), legend.key.size = unit(0.5, 'lines'), strip.background = element_rect(color="black", fill="#FFFFFF", linetype="solid") # panel.grid.major=element_line(size=0.25, color=alpha('black', 0.25)), # panel.grid.minor=element_line(size=0.25, color=alpha('black', 0.25)) ) ) if (col == 'host') { if (nrow(unique(data['host'])) > 13) { p <- (p + theme( legend.position='none' ) ) } } else if (col == 'metric') { p <- (p + scale_fill_jcolors("pal12") ) } else if (col == 'name') { } if (view == 'jscore') { fn = sprintf('%s/jscore_%s.png', out_dir, col) ggsave(fn, width=10, height=2.5) } if (view == 'default') { p <- ( p + facet_grid(metric ~ .) + ylab('') + ylab('Score') + theme( legend.position='none', #strip.text.x = element_text(angle=0), strip.text.y = element_text(angle=0), ) ) fn = sprintf('%s/default_%s.png', out_dir, col) ggsave(fn, width=7, height=7) } else if (view == 'nscore') { p <- ( p + facet_grid(host ~ .) + ylab('NScore') + theme( legend.position='none' ) ) if (col == 'name') { p <- p + theme(legend.position = 'bottom') } fn = sprintf('%s/nscore_%s.png', out_dir, col) ggsave(fn, width=4, height=4) } else if (view == 'mscore') { p <- ( p + facet_grid(host ~ metric) + ylab('MScore') + theme( legend.position='none', axis.text.x = element_text(angle=90, hjust=1) ) ) fn = sprintf('%s/mscore_%s.png', out_dir, col) ggsave(fn, width=8, height=4) } } # Create 10 minutes segments cat_data <- rename_metrics(read.csv(config[['cat_fn']])) # categorized data cat_data['rmin'] = cat_data['runtime'] / 60 # runtime in minutes duration = max(ceiling(cat_data['rmin'])) bins = seq(0, duration, graph_config[['seg_size']] ) d2 <- cat_data %>% group_by(cat) %>% mutate(bin = cut(rmin, breaks = bins, labels = bins[-1])) d3 <- d2 %>% group_by(name, metric, host, bin) %>% summarise(score = sum(cat)) x_breakpoints <- bins[seq(1, length(bins), graph_config[['x_breakpoint_interval']])] for (col in graph_config[['cols']]) { for (view in graph_config[['views']]) { visualize_categories (global, config, d3, view, col, x_breakpoints) } } ## TODO #visualize_rawdata <- function(data) { #} #pickle_data <- rename_metrics(read_pickle_file(config[['raw_fn']])) # raw data #print(head(pickle_data)) #offset = min(pickle_data$timestamp) #dat = pickle_data[complete.cases(pickle_data),] #dat$runtime = dat$timestamp - offset #dat['rmin'] = dat['runtime'] / 60 # runtime in minutes #visualize_rawdata(dat)