#!/usr/bin/env Rscript library(ggplot2) library(dplyr) require(scales) args = commandArgs(trailingOnly = TRUE) file = "job_similarities_5024292.csv" file = "job_similarities_7488914.csv" file = args[1] data = read.csv(file) # Columns are: jobid alg_id alg_name similarity data$alg_id = as.factor(data$alg_id) print(nrow(data)) # FILTER, TODO data = data %>% filter(similarity <= 1.0) # empirical cummulative density function (ECDF) ggplot(data, aes(similarity, color=alg_name, group=alg_name)) + stat_ecdf(geom = "step") + xlab("SIM") + ylab("Fraction of jobs") + theme(legend.position="bottom") + scale_color_brewer(palette = "Set2") ggsave("ecdf.png") e = data %>% filter(similarity >= 0.5) ggplot(e, aes(similarity, color=alg_name, group=alg_name)) + stat_ecdf(geom = "step") + xlab("SIM") + ylab("Fraction of jobs") + theme(legend.position="bottom") + scale_color_brewer(palette = "Set2") print(summary(e)) ggsave("ecdf-0.5.png") # histogram for the jobs ggplot(data, aes(similarity), group=alg_name) + geom_histogram(color="black", binwidth=0.025) + aes(fill = alg_name) + facet_grid(alg_name ~ ., switch = 'y') + scale_y_continuous(limits=c(0, 100), oob=squish) + scale_color_brewer(palette = "Set2") + ylab("Count (cropped at 100)") ggsave("hist-sim.png") # + scale_y_continuous(trans = log2_trans(), breaks = trans_breaks("log2", function(x) 2^x), labels = trans_format("log2", math_format(2^.x))) #+ ylim(0, 250) + stat_summary(aes(linetype = alg_id), fun.y=mean, geom="line") + exit(0) ########### merged both = rbind(i[ , (names(i) %in% names(d))], d[ , (names(d) %in% names(i))]) both$tpGiB = both$tpMiBs / 1024 both$PPN = as.factor(both$PPN) e = both %>% filter(nodes == 500) ggplot(e, aes(PPN, tpGiB, color=config, group=config)) + geom_boxplot() + facet_grid(op + dim ~ ., switch = 'y') + xlab("PPN") + ylab("Performance in GiB/s") + stat_summary(aes(linetype = config), fun.y=mean, geom="line") + theme(legend.position="bottom") + ylim(0, 250) ggsave("500-nodes.png") ggplot(e, aes(PPN, tpGiB, color=config, group=config)) + geom_boxplot(position=pd) + facet_grid(op + dim ~ ., switch = 'y') + xlab("PPN") + ylab("Performance in GiB/s") + stat_summary(aes(linetype = config), fun.y=mean, geom="line") + theme(legend.position="bottom") ggsave("500-nodes-all.png") e = both %>% filter(nodes == 200) ggplot(e, aes(PPN, tpGiB, color=config, group=config)) + geom_point(position=pd) + facet_grid(op + dim ~ ., switch = 'y') + xlab("PPN") + ylab("Performance in GiB/s") + stat_summary(aes(linetype = config), fun.y=mean, geom="line") + theme(legend.position="bottom") + ylim(0, 250) ggsave("200-nodes.png") ggplot(e, aes(PPN, tpGiB, color=config, group=config)) + geom_point(position=pd) + facet_grid(op + dim ~ ., switch = 'y') + xlab("PPN") + ylab("Performance in GiB/s") + stat_summary(aes(linetype = config), fun.y=mean, geom="line") + theme(legend.position="bottom") ggsave("200-nodes-all.png") e = both %>% filter(nodes == 100) ggplot(e, aes(PPN, tpGiB, color=config, group=config)) + geom_point(position=pd) + facet_grid(op + dim ~ ., switch = 'y') + xlab("PPN") + ylab("Performance in GiB/s") + stat_summary(aes(linetype = config), fun.y=mean, geom="line") + theme(legend.position="bottom") + ylim(0, 250) ggsave("100-nodes.png") ggplot(e, aes(PPN, tpGiB, color=config, group=config)) + geom_point(position=pd) + facet_grid(op + dim ~ ., switch = 'y') + xlab("PPN") + ylab("Performance in GiB/s") + stat_summary(aes(linetype = config), fun.y=mean, geom="line") + theme(legend.position="bottom") ggsave("100-nodes-all.png") ########### End merged plots d$tpGiB = d$tpMiBs / 1024 d$nodes = as.factor(d$nodes) d$PPN = as.factor(d$PPN) d$volume = as.factor(round(d$sizeMiB/1024,1)) # Compare: # scale_colour_gradientn(colours=rainbow(3)) # d %>% filter(tpGiB > 100) e = d %>% filter(nodes==5) # , size>100 ggplot(e, aes(volume, tpGiB, color=PPN, group=PPN)) + geom_point(position=pd) + facet_grid(op + config ~ ., switch = 'y') + xlab("Volume in GiB") + ylab("Performance in GiB/s") + stat_summary(aes(), fun.y=mean, geom="line") + theme(legend.position="bottom") ggsave("5nodes-write-size-compare.png", width=4, height=3) ggplot(e, aes(volume, tpGiB, color=PPN, group=PPN)) + geom_point(position=pd) + facet_grid(type ~ ., switch = 'y') + xlab("Volume in GiB") + ylab("Performance in GiB/s") + stat_summary(aes(), fun.y=mean, geom="line") + theme(legend.position="bottom") ggsave("5nodes-read-size-compare.png", width=4, height=3) e = d %>% filter(size==60000) ggplot(e, aes(nodes, tpGiB, color=PPN, group=PPN)) + geom_point(position=pd) + facet_grid(type ~ ., switch = 'y') + xlab("Nodes") + ylab("Performance in GiB/s") + stat_summary(aes(), fun.y=mean, geom="line") + theme(legend.position="bottom") ggsave("write-60000.png", width=4, height=3) ggplot(e, aes(nodes, tpGiB, color=PPN, group=PPN)) + geom_point(position=pd) + facet_grid(type ~ ., switch = 'y') + xlab("Nodes") + ylab("Performance in GiB/s") + stat_summary(aes(), fun.y=mean, geom="line") + theme(legend.position="bottom") ggsave("read-60000.png", width=4, height=3) e = d %>% filter(size==60000, PPN==12) ggplot(e, aes(nodes, write, color=type, group=type)) + geom_point(position=pd) + xlab("Nodes") + ylab("Performance in GiB/s") + theme(legend.position="bottom") + stat_summary(aes(group=type), fun.y=mean, geom="line") ggsave("compare-write-12.png", width=4, height=3) e = d %>% filter(size==60000, PPN==4) ggplot(e, aes(nodes, write, color=type, group=type)) + geom_point(position=pd) + xlab("Nodes") + ylab("Performance in GiB/s") + theme(legend.position="bottom") + stat_summary(aes(group=type), fun.y=mean, geom="line") ggsave("compare-write-4.png", width=4, height=3)