Automatic Characterization of HPC Job Parallel Filesystem 1/0O
Patterns

Joseph P. White

Alexander D. Kofke

Robert L. DeLeon

Center for Computational Research University at Buffalo Center for Computational Research
Buffalo, NY, USA Buffalo, NY, USA Buffalo, NY, USA
jpwhite4@buffalo.edu adkofke@buffalo.edu rldeleon@buffalo.edu

Martins Innus
Center for Computational Research
Buffalo, NY, USA
minnus@buffalo.edu

ABSTRACT

As part of the NSF funded XMS project, we are actively research-
ing automatic detection of poorly performing HPC jobs. To aid
the analysis we have generated a taxonomy of the temporal I/O
patterns for HPC jobs. In this paper we describe the design of tem-
poral pattern characterization algorithms for HPC job I/0. We have
implemented these algorithms in the Open XDMoD job analysis
framework. These I/O classifications include periodic patterns and
a variety of characteristic non-periodic patterns. We present an
analysis of the I/O patterns observed on the /scratch filesystem on
an academic HPC cluster. This type of analysis can be extended to
other HPC usage data such as memory, CPU and interconnect usage.
Ultimately this analysis will be used to improve HPC throughput
and efficiency by, for example, automatically identifying anomalous
HPC jobs.

CCS CONCEPTS

» General and reference — Metrics; Performance; « Theory
of computation — Pattern matching;

KEYWORDS

Performance, pattern analysis, I/O

ACM Reference Format:

Joseph P. White, Alexander D. Kofke, Robert L. DeLeon, Martins Innus,
Matthew D. Jones, and Thomas R. Furlani. 2018. Automatic Characterization
of HPC Job Parallel Filesystem I/O Patterns. In PEARC ’18: Practice and
Experience in Advanced Research Computing, July 22-26, 2018, Pittsburgh, PA,
USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3219104.
3219121

1 INTRODUCTION

As part of the NSF funded XD Metrics Service (XMS) project, we
are developing techniques for the automatic detection of poorly

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PEARC ’18, July 22-26, 2018, Pittsburgh, P A, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6446-1/18/07...$15.00
https://doi.org/10.1145/3219104.3219121

Matthew D. Jones
Center for Computational Research
Buffalo, NY, USA
jonesm@buffalo.edu

Thomas R. Furlani
Center for Computational Research
Buffalo, NY, USA
furlani@buffalo.edu

performing HPC jobs. We have developed several complementary
detection mechanisms including simple analyses, such as compar-
ing the actual usage of an HPC job to the original requested re-
sources, to a more complex analysis that uses machine learning
algorithms to classify jobs [7]. The source data for these analyses
include the job accounting information, application information
and job performance data recorded from CPU hardware counter
values, I/O metrics and O/S counters. Another focus of the XMS
project is facilitating the characterization of HPC system workloads.
Workload analyses are an essential part of the machine lifecycle.
Hardware and software designers, end users and facility operators
all can benefit from details on HPC cluster usage.

One interesting avenue of research is the identification of poorly
performing HPC jobs based on anomaly detection. The overall idea
is that if we have a characterization of the properties of a typical
HPC job in a given category then we will be able to identify atypical
jobs. This categorization and anomaly detection procedure must be
an automatic process. The sheer volume of the data means that it is
not feasible for system support staff to manually check all HPC jobs.
For example, in 2016 there were over 4 million jobs using over 100
million CPU hours on the HPC cluster at our center. Additionally,
job I/O characterization is an important prerequisite for many areas
of study including the development of I/O aware job scheduling
algorithms and parallel filesystem design and tuning.

2 RELATED WORK

The study of HPC job I/O behavior has been an active area research
for three decades from Miller and Katz [17] in the early 1990’s to
recent work Luu et al. [14]. HPC job I/O behavior is bursty, but with
regular cycles and many compute-intensive HPC jobs use very little
1/0 [17, 18, 20, 27]. HPC jobs have distinct phases of I/O operation,
which differs between and is characteristic of different application
software [21].

Buneci and Reed [2] generated signatures containing structural
and temporal features from time-series performance metrics and
used these to distinguish between well- and poor-performing ap-
plications. They used a heuristic algorithm that detected several
patterns in timeseries data including periodic patterns.

Data collection strategies for HPC job I/O can be broadly orga-
nized into three categories: Instrumentation and analysis of the
application software, analysis of data from filesystem I/O nodes
and instrumentation/analysis of data from the compute nodes.

https://doi.org/10.1145/3219104.3219121
https://doi.org/10.1145/3219104.3219121
https://doi.org/10.1145/3219104.3219121

PEARC *18, July 22-26, 2018, Pittsburgh, P A, USA

Application instrumentation provides detailed information about
filesystem I/O usage and accurate timing information. However, it
typically requires recompiling the code or relinking with dedicated
data collection tools (such as Score-P [16], MPIProf [10] or IOT [9]).
Tools that require recompilation are typically not enabled for all
jobs on an HPC resource so I/O characterization must be done on a
case by case basis. Chang et. al [5] chose 15 different cases across
13 different applications and instrumented them using the MPIProf
and IOT tools. Tools such are Darshan [3] are lightweight and can
be enabled by default for all jobs on an HPC resource. However,
there are some codes that are incompatible with Darshan so sites
that have it enabled provide a mechanism for users to disable it.
Unfortunately, this results in many jobs without instrumented data.
For example, Luu et al. [14] used Darshan data from a period of
four years on three large scale supercomputers with an average
Darshan coverage of 20% to 40%.

Log data collected from filesystem I/O nodes has the advantage
that it is available regardless of the HPC jobs that are running,
however it is challenging to identify the HPC job that caused a given
I/O request. Liu et. al [12] developed a system for automatically
identifying I/O intensive jobs from the logs of the filesystem I/O
nodes. They were able to mine the correlation between I/O traffic
and application executions to obtain information on application
I/O patterns. This data mining relies on the assumption that a given
application has a consistent I/O pattern that remains the same
between different HPC jobs.

The compute nodes on an HPC resource can be instrumented us-
ing one of the many available tools, such as PCP [24], tacc_stats [6],
Ganglia [15] or LDMS [1]. A benefit of this approach is that I/O
metrics can be collected for all jobs without requiring them to be
recompiled and it is straightforward to associate the I/O data col-
lected on a compute node with the job that ran on the node. The
disadvantage is that data is not as fine grained as the event data
obtained by instrumenting the job software directly.

3 CCR RESOURCE CHARACTERIZATION

This study looked at data collected on the Center for Computa-
tional Research’s (CCR) academic HPC resource, Rush, which is a
heterogeneous system containing approximately 700 x86_64 com-
pute nodes. All compute nodes have local hard disk storage and are
interconnected with Gigabit Ethernet and InfiniBand. Rush has two
global filesystems: a 3PB IBM GPFS [23] high-performance parallel
file system for the global shared parallel scratch space and Isilon
1Q36000x Storage Arrays for general network file system access.
The system uses Slurm as the resource manager.

Every compute node has the Performance Co-Pilot (PCP) [24]
software running and configured to collect a wide range of system
metrics every thirty seconds. The Slurm job prolog and job epilog
scripts run a command that triggers PCP data collection on the
compute nodes assigned to each HPC job. This ensures that metric
data is recorded immediately before and after every HPC job. The
metrics collected by PCP include the O/S counters such as the load
average, Linux kernel CPU statistics, information about processes
from the /proc filesystem and information from hardware drivers
reported to the O/S such as the amount of data transferred to/from
GPFS.

J. P. White et al.

Data are analyzed using the SUPReMM Job Summarization soft-
ware [4] that processes the compute-node level PCP archives to
generate job-level summary information. The SUPReMM Job Sum-
marization software integrates with Open XDMoD [19], which
provides a rich set of analysis and charting tools for HPC job ac-
counting and performance metrics. The SUPReMM Job Summariza-
tion software is written in python and has a modular plugin-based
architecture, which makes it very easy to extend to add new data
analyses. The software includes plugins that generate simple statis-
tics, such as the overall CPU usage for the job, the total amount of
data transferred to/from any filesystems, and the maximum mem-
ory usage. There are also more complicated analysis plugins such
as job catastrophe detection that finds step-function timeseries be-
havior of the CPU core L1D cache load rate to detect a catastrophic
drop in job performance.

Compute node sharing is enabled on Rush. The memory and
CPU usage of individual HPC jobs is restricted using Linux cgroups.
The summarization software parses the cgroup information so that
the memory and CPU usage metrics can be computed correctly.
Unfortunately, filesystem I/O is not constrained by cgroups and
there are no metrics collected that allow the correct attribution
of I/O data for a given job on a shared node. Therefore, we have
excluded shared jobs from this analysis as there is no accurate I/O
data available.

4 JOB CHARACTERIZATION TECHNIQUES

We performed an ad-hoc analysis of jobs on our academic HPC
cluster using XDMoD. We selected a few hundred jobs that used the
GPFS filesystem and looked at the timeseries I/O data. We observed
that there were a small number of common I/O patterns: main I/O
usage near the start of the job, main I/O usage near the end of the
job, I/O activity at the start and end but not during the job, low
/O at the start or end but high in the middle. We also observed
jobs with approximately regular activity throughout the job and
regular periodic I/O activity. We assume that these I/O patterns are
signatures of common use cases for HPC job I/O.

In this section we describe the two complementary I/O pat-
tern detection algorithms that we implemented as plugins for the
SUPReMM job summarization software.

4.1 Simple job classifier

Given the observed job I/O behavior we wrote a simple heuristic
classification algorithm that categorized jobs based on a very coarse
measure of when the majority of the I/O occurred. This simple
classifier was not intended to comprehensively categorize all job
types; we expected that there would be jobs not correctly identified
by a simple algorithm and there would be jobs that do not fit into
the simple categories. However, if the simple algorithm has good
accuracy then it has captured the principle characteristics. Since
we are interested in coarse grained temporal behavior of jobs, the
algorithm splits the job into four equal width time intervals and
compares measurements between these four sections. The heuristic
algorithm classified the read and write data separately. For jobs
that run on multiple compute nodes, the mean value per compute
node was used. The algorithm produces a single read and a single
write classification for each job.

Automatic Characterization of HPC Job Parallel Filesystem 1/0O Patterns

The algorithm is as follows: If the average amount of data trans-
ferred per node for the job was less than a threshold (1IMB) then
the job is categorized as having no significant filesystem usage
(NO USAGE). The timeseries data for the job is then split into four
equally spaced sections and the amount of data transferred during
each section is calculated (s . . . s3). The coefficient of variation of
these four measurements is computed and if it is below a threshold
(0.25) then the job is categorized as having approximately uniform
data transfer (~UNIFORM) otherwise the job is classified according
to Algorithm 1 below. The job categories are START meaning that
the majority of the I/O occurs at the beginning of the job, END for
jobs that perform most of the I/O at the end, HILL for jobs that
perform I/O predominately in the middle and CANYON for jobs
that have I/O at the start and end but not during the middle. Jobs
that have I/O that are not matched by the algorithm are marked as
OTHER.

Algorithm 1 Simple job classification

if so > s1 + s3 + s3 then
if s3 > 2(s1 + s2) then
a «— CANYON
else
a « START
end if
else if s3 > sy + s1 + s then
if sp > 2(s1 + s2) then
a «— CANYON
else
a «— END
end if
else if s1 + sp > 2(sg + s3) then
a «— HILL
else if min(sg, s3) > 2 max(sy, s2) then
a «— CANYON
else
a «— OTHER
end if

4.2 Periodicity Detection

In addition to the simple job classifier described in the previous
section, we also constructed a model that seeks periodic I/O behav-
ior. We implemented the AUTOPERIOD algorithm described in [26]
in python. This algorithm is designed to automatically detect peri-
odicity in time series data. We chose this algorithm because of the
relative ease of implementation in python using existing libraries
and because of the anticipated computational efficiency and accu-
racy. Here we give a brief overview of the method. Full details of
the algorithm are provided in [26].

The AUTOPERIOD algorithm uses a two-tier approach, by consid-
ering the information in both the periodogram and the autocorrela-
tion function (AC¥). The algorithm to determine whether a job is
periodic and to compute the period with the highest spectral power
has the following individual steps:

o Compute the periodogram of the data using the Lomb-Scargle
method.

PEARC ’18, July 22-26, 2018, Pittsburgh, P A, USA

@
m 1.0 =
% I I I I I
2 0.5 |-]
5]
-
£ oo | | | |
[=] 0 100 200 300 400 500 600
Elapsed time (minutes)
75 T T T T]
3
£ 25 4 -
0 — —— - - T _— 71 — 1
0 50 100 150 200 250
Period (minutes)

100 T T T T T =
75 -
O 50 —
< 925 |\ 4

0 | | | |

Offset (minutes)

Figure 1: Illustration of the AUTOPERIOD algorithm steps. The
top plot shows the data read from /scratch for an HPC job.
The middle plot shows the periodogram computed from the
I/0 data and the bottom plot shows the autocorrelation func-
tion for the data. Note the different x-axis scales. The red
line shows the detected hill using two segment linear ap-
proximation.

e Determine the statistically significant periods. If there are
none, the job is non-periodic.

e Compute the circular AutoCorrelation Function (ACF).

e From the candidate periods with significant spectral power
in the periodogram, check to see if the period is on a hill or
valley of the ACYF . The points are checked in order from
highest to lowest power.

e Choose the candidate period with the highest power that is
on a hill of the ACF . This is the period of the job. If there
are no peaks on a hill of the ACYF the job is non-periodic.

The algorithm is illustrated in Figure 1, which shows the data
from an HPC job that had periodic reads from the filesystem. The
top plot shows the filesystem read rate over time. The periodogram
calculated from this data is shown in the second plot (note the
different x-axis scale). The dashed line in the periodogram shows
the computed significance threshold. The circular AutoCorrelation
Function (ACY) is shown in the bottom plot. In this case, only one
of the candidate points in the periodogram corresponds to a hill on
the ACF . It is also the point with the highest power. The result of
the hill detection algorithm is shown as a bold red line.

To compute the periodogram we used an implementation of the
Lomb-Scargle algorithm [13] and [22] from the Astropy python
library [25]. The Lomb-Scargle algorithm was chosen because it
does not require evenly sampled measurements: the job data does
not have even spacing at the beginning and end of the jobs and has
approximately even spacing during the job (there is some jitter in
the measurement time).

Initially we used the Monte-Carlo method [26] to determine the
statistical significance of the candidate peaks in the periodogram.
Unfortunately, this was too computationally expensive slowing the

PEARC *18, July 22-26, 2018, Pittsburgh, P A, USA

model to an unacceptable extent so instead we used an estimate
of the statistically significant periods described in [8]. The Monte
Carlo computation increased the runtime of the overall process
by 30% on average. With few exceptions, the faster method pro-
vides an adequate replacement for the more rigorous Monte Carlo
calculation.

The hill detection on the ACY is performed by choosing a spe-
cific portion of the ACF around the candidate period and using
a two segment linear approximation. The location of the split be-
tween the two linear segments is chosen as the split location that
minimizes the total approximation error. The angle between the
two linear segments can then be trivially calculated to determine
whether the candidate period is on a hill or valley.

5 VALIDATION

We tested our implementation of the AUTOPERIOD algorithm against
reference periodic data that we created for the task. We also at-
tempted to reproduce the results from the original paper. We were
not able to obtain the MSN query log data used in the paper so we
used equivalent data from Google’s Trends service. We were able
to reproduce identical results from the paper using this data, which
gave us confidence that the algorithm implementation was correct.

During initial testing with job I/O data, we noticed some cases
where the algorithm identified periodic behavior but the I/O data
did not appear to be periodic or was periodic but appeared to have
a different period than the main period identified. Therefore, we
tried to quantify the accuracy of the period detection algorithm on
HPC job I/O data. We attempted to develop a strategy to automati-
cally verify the period detection result by comparing the predicted
signal to the job data. However, we were not able to develop a reli-
able automatic verification method. This was mainly because the
AUTOPERIQD algorithm does not provide any phase or amplitude
information and the simple phase detection approaches that we
tried were not successful.

Since we were not able to easily automatically verify the results,
we used a manual approach. We developed a simple web-based
application that allowed rapid manual verification. The web inter-
face displayed a plot of the data rate for a randomly selected job
alongside a visualization of the period detection result. If the job
was detected as periodic the period result was plotted as a sine wave
with the phase aligned with the maximum value of the job data rate.
The interface had three web form buttons “correct classification”,
“incorrect classification” and “not sure”. When the form button was
clicked the page refreshed with the plots for another job that was
selected at random. This simple interface was very easy to use and
we were able to manually verify thousands of jobs with minimal
effort.

The simple categorization algorithm was manually verified sim-
ilarly to the period detection. We created a separate web-based
application that displayed the data rate plot for a job selected at
random and had web form buttons for START, END, CANYON,
HILL OTHER and ~UNIFORM, and PERIODIC!.

Overall the manual classification of jobs was in satisfactory agree-
ment with the automatic classifiers.

!We split the OTHER and ~UNIFORM into distinct categories after the verification
software was written.

J. P. White et al.

aMm
2

9,40k %
2 am 2
o 30K -
2 oM €
é.20k 5
10k I ™
o [| B

SS5SS5S55S5S5S060060600606060606FE

N < 0 © AN I O © AN~ AN < 00 O© AN T OO NN~ ™

' - M O N WO - ' - M O N W = A

sss_ ... 79 s6560856 ... 900

FNY 2225558938866 a ¢

— M X © © v - O Y © © ©v

©8g © N

GPFS bytes read

Figure 2: XDMoD plot showing the number of jobs and core
hours for non-shared HPC jobs broken down by GPFS data
reads from December 2016 to October 2017. There were 1.2
M jobs (~42 M core hours) with less than 1 MB GPFS reads.
and 150,000 jobs (~6.6 M core hours) with no usage data (not
shown).

6 RESULTS

The results presented here are from GPFS filesystem data collected
on the academic HPC resource, Rush, at CCR. The data presented
here cover the period from December 2016 to October 2017 inclusive.
During this time the filesystem was used as high speed scratch
space — the system policy was that files older than three weeks
were subject to removal by a scrubber and the filesystem was not
backed up.

The job analysis was performed on a subset of jobs that ran on
Rush during the studied time period: we excluded shared-node jobs
because we do not have reliable information about I/O usage for
each job. We also excluded jobs that were shorter than ten minutes
to ensure that there were sufficient measurements to be able to
resolve any time series patterns (the metric collection period was
30 seconds).

There were 1.7 million jobs longer than ten minutes out of a
total of 3.7 million jobs (95.6 million and 96.1 million core hours
respectively). Of these 1.7 million jobs there were ~970,000 shared
jobs and ~720,000 exclusive jobs (22 million and 74 million core
hours respectively). The data coverage for the studied jobs is good
— 92% of jobs by core hours had performance data (625,000 jobs
using 68 million core hours).

The breakdown of I/O usage for the non-shared jobs by total
amount of data read from /scratch is shown in Figure 2. The
amount of data read varies significantly between different jobs. The
most frequent read sizes are 0.5 — 1 GB by job count and 64 — 128
GB by CPU hours. The breakdown of application usage for jobs that
read more than 1 MB data is shown in Figure 3. The “uncategorized”
label corresponds to jobs that did not match a known community
application and are mostly composed of user written codes. The
usage breakdowns by amount of data written to /scratch are
qualitatively the same.

A large proportion of the studied jobs did not use scratch space at
all. There were 470,000 jobs (38 million core hours) with no scratch

Automatic Characterization of HPC Job Parallel Filesystem 1/O Patterns

gromacs
1,081,602

matlab

uncategorized
1,118,553 " 9

9,628,552

system applications
2,117,493

PROPRIETARY =~
2,235,012

wrf
2,350,262

python
2,954,823

qg-espresso
8,639,320
orca

3,959,701

Figure 3: Application core hours for jobs that had GPFS us-
age data and > 1MB GPFS reads from December 2016 to Oc-
tober 2017.

2500

2000

Frequency
_ =
o ot
(= ==
o (=)

R —— s)
0 10 20 30 40 50 60 70 80 90

Period (minutes)

Figure 4: Histogram of write data period for jobs that were
detected as periodic and had approximately uniform writes
over time. The x-axis is truncated at 90 minutes. There are
1005 jobs with write period longer than 90 minutes.

usage. The top three application categories for these jobs were a
commercial HPC software package (195,000 jobs), the molecular dy-
namics package GROMACS (140,000 jobs) and the set of uncategorized
applications (96,000 jobs).

The results from the simple classifier algorithm are shown in Ta-
ble 1. Aside from the NO USAGE category, OTHER and ~UNIFORM
are the most common categories. It is interesting to note that with a
few exceptions the diagonal entries, that is those in which the read
and write classifications are the same, are generally larger than the
non-diagonal entries.

There were ~22,500 jobs that had ~UNIFORM or OTHER write
classification from the simple classifier and were also detected as
periodic. The histogram of the detected periods is shown in Figure 4.
There are distinct peaks in the histogram around 3 minutes, 13
minutes and 62 minutes there is also a bulge around 45 minutes.
95% of jobs in the 60-64 minute period were scavenger queue jobs
associated with a single PI. Using Open XDMoD we checked the
job launch scripts and found that the jobs were all configured to use
checkpointing using the DMTCP software with a one hour checkpoint
time.

PEARC ’18, July 22-26, 2018, Pittsburgh, P A, USA

900
800
700
600
500
400
300

Frequency

st as b
0 10 20 30 40 50 60 70 80 90

Period (minutes)

Figure 5: Histogram of read data period for jobs that were
detected as periodic and had approximately uniform reads
over time. The x-axis is truncated at 90 minutes. There are
788 jobs with read period longer than 90 minutes.

There were ~8,300 jobs with read periodic classification and
~UNIFORM or OTHER from the simple classifier. The longest read
period was ~9 hours. The histogram of the read periods is shown in
Figure 5. The read histogram is qualitatively different to the write
histogram. There is a peak around 3 minutes, but there are no sharp
peaks in the region of 13 and 62 minutes.

We briefly examined the job category classifications as a func-
tion of application. As would be expected if the classifications were
independent of application, most applications had either OTHER
or ~UNIFORM as the most common job classification. Several did
not, with either START or END being the most common classifi-
cation. However, the number of jobs falling into these application
categories was rather small and might simply represent local usage
rather than any inherent tendency in the application performance.
We examined the percentage of periodic jobs as a function of ap-
plication as well. A similar trend was noticed in that while some
applications such as WRF, LAMMPS and Quantum ESPRESSO had a
substantially higher percentage of periodic jobs it is difficult to
determine if this represents an inherent property of the application
performance or a variation in local usage. We also looked at the
percentage of periodic jobs as a function of wall duration. We found
that for longer jobs, those greater than 12 hours, that the fraction
of periodic jobs is approximately double the numbers shown in
Table 2. This could be due to a greater usage of check-pointing in
the longer jobs.

6.1 Classification failures

During the manual verification of the results, we observed some
cases where the periodic detection gave incorrect or unexpected
results. As expected, we also observed many complex I/O patterns
that were not well captured by the simple heuristic classifier. In
this section we list a few examples.

Figure 6 shows an example job that had periodic write behavior
with two main frequencies. The AUTOPERIOD algorithm detected
13 minutes as the main period, which corresponds to the distance
between each pair of peaks in the plot. The other period is approxi-
mately one hour, which was also a statistically significant period
in the periodogram, but the AUTOPERIOD algorithm selected the 13
minute period since it has a higher power in the periodogram.

PEARC *18, July 22-26, 2018, Pittsburgh, P A, USA

J. P. White et al.

Table 1: Number of jobs broken down by classification type

N HILL START END ~UNIFORM OTHER CANYON NO USAGE
HILL 1166 652 170 30 131 116 138
START 218 4829 2053 7694 2010 2642 2356
END 3366 4395 4263 518 8899 1840 397
~UNIFORM 106 621 521 9554 1336 241 545
OTHER 240 837 713 2874 9731 833 112
CANYON 1389 730 2208 1130 2793 11397 847
NO USAGE 1468 775 32885 7077 2234 2824 492980

Table 2: Percentage of jobs broken down by classification type. The right-hand column is the overall percentage of jobs that

are periodic and had approximately uniform I/O over time.

Percent of all jobs by Category

Direction HILL START END ~UNIFORM OTHER CANYON NO USAGE Periodic (% overall)
Read 0.38 342 3.72 2.03 2.41 3.22 84.8 1.31
Write 1.25 2.02 6.72 4.53 4.26 3.12 78.1 3.55
1.0 —~ 160 [I/ B B
@ 08 - g 120 - 7
g g 4
% 0.6 - s 5 801
-~ E = —
£ 04l - g 0
s 0 Ll ey p I I
8 0.2 - — 0 50 100 150 200 250 300 350 1600 1700 1800 1900
0.0 | | | Elapsed time (minutes)
0 50 100 150 200 250 300 s : : : :
Elapsed time (minutes) F— - - - - - - - - - - = - = = y
g 50 - _
2
Figure 6: Example job that had periodic writes with two pe- A
riods. This job ran for 24 hours and the pattern repeated for | | ‘ ‘ ‘

the whole job. Only the first few cycles are shown in the plot
for clarity.

Figure 7 shows an example job that was incorrectly marked as
periodic because the estimate of the significance threshold for the
periodogram was much less than the actual significance threshold
(as determined by the Monte Carlo method). In this case there
the ACYF had enough noise that one of the (incorrect) candidate
periods on the periodogram looked enough like a hill to the hill
detection algorithm.

Figure 8 shows an example where the heuristic classifier gave the
correct result as per the design, but which shows the limitations of
the simple model. The job does have the majority of the I/O during
the first quarter, however there appears to be multiple distinct
phases of operation over the coarse of the job.

Figure 9 shows an example job where the AUTOPERIOD algorithm
identified a period that was not immediately obvious to the manual
classifiers. This job has a repeating pattern that stops after ~8 hours
and then there is no write activity for the rest of the job (~34 hours).
The periodogram identifies a short period around 13 minutes as well

0 100 200 300 400 500 600

Period (minutes)

Figure 7: The read data rate over time for a job that was
incorrectly identified as periodic and the associated peri-
odogram. The green dashed line indicates the significance
level p < 0.01 computed using a Monte Carlo method. The
red dotted line indicates the significance level estimated us-
ing the exponential assumption.

as a repeating pattern with period 196 minutes. The longer period
has the higher power and is the one that the algorithm selects. Note
that the fact that there was no activity for the majority of the job
does not affect the periodic detection.

7 CONCLUSIONS

We have implemented two complementary algorithms to classify
I/O data of HPC jobs: a simple heuristic classifier that is based on

Automatic Characterization of HPC Job Parallel Filesystem 1/0O Patterns

Data rate (MB/s)

| |
0 5 10 15 20 25 30

Elapsed time (minutes)

Figure 8: Example job that was classified as a START job by
the heuristic classifier.

R , .

g T T T \ 7/ T T

@

¢ < (T 1

£ 00 | \ ! ! L, L1

_ 0 100 200 300 400 500 600 2300 2400 2500 2600
Elapsed time (minutes)

5]

3

K |

100 T T T T T
K 75 =
Q50 |-
<(25
0= | | |] ! !

0 100 200 300 400 500 600

Offset (minutes)

Figure 9: The write rate to /scratch for an example job and
the corresponding periodogram and AC¥ . No data was writ-
ten by this job after the first ~8 hours.

simple assumptions about typical I/O patterns in HPC software and
a classifier that detects periodic patterns and determines their pe-
riod. These were implemented in the SUPReMM job summarization
software that forms part of the Job performance data workflow for
Open XDMoD.

The categorization software was run on the I/O metrics for the
GPFS-based /scratch filesystem for all HPC jobs on an academic
HPC cluster. We were able to detect the signature of periodic writes
consistent with check-pointing. The simple heuristic model worked
well but there were a sizable number of jobs that did not fit into
the simple categories.

One of the original motivations for this work was to categorize
jobs to help aid in job anomaly detection. The categorization data
on its own is not expected to be sufficient to detect job anomalies.
However, an example of a direct application of this work is for job
checkpointing identification. Users of the “scavenger” partition on
Rush are expected to be using checkpointing because the jobs may
be preempted. Users whose jobs are categorized as no significant
usage or do not have periodic writes can easily be identified. Support

PEARC ’18, July 22-26, 2018, Pittsburgh, P A, USA

staff can then contact the users to see if they need help setting up
checkpointing for their jobs.

8 FUTURE WORK

Currently the periodicity detection summarization plugin stores all
1/0 data in memory before computing the periodicity. The memory
usage requirements are still fairly modest: ~100 MB data required to
process a job that had a one month wall time. However, the plugin
runs at the same time as the other analyses (there are currently
thirty plugins, most of which compute simple statistics about job
metrics). The current summarization software uses ~1 GB on av-
erage when processing a typical HPC job. Ideally the individual
plugins would try to minimize their memory footprint. One way
to reduce the memory requirements of periodicity detection sum-
marization plugin would be to change to a streaming algorithm by
using an incremental calculation of the Fourier Transform.

The results presented here use the combined I/O data from all
compute nodes for each HPC job. However, different HPC appli-
cations have different I/O characteristics on different nodes and
combining the measurements from all nodes obscures these dif-
ferences. Luu et. al. [14] identified three common spacial modes:
local file I/O, where each compute node writes to independent files,
subset file I/O, where a subset of compute nodes are responsible for
the file I/O and serial I/O where only one compute node performs
file I/O. Our analysis works fine for serial I/O and will work fine
for the subset and local modes assuming the compute nodes are
lock-step synchronized. During testing we did observe the exis-
tence of HPC jobs that used the local I/O paradigm and where the
compute node had periodic I/O but there was a phase difference
between individual compute nodes. We have not done any analysis
to determine how common this case is, but we note that this class of
job would still be marked as periodic using our algorithm. In future,
we want to investigate including node analysis with the temporal
analysis so see how much this improves job characterization.

This study focused on the scratch filesystem I/O for a GPFS
filesystem. The main reason for initially looking at the data for the
scratch filesystem is that the scratch I/O is by design (by either
the developer of the application, or by the configuration setting of
the user). The periodic detection library and time segment analysis
codes are independent of the metric source data, so it is trivial to
run these algorithms on any available metrics. In addition to the
GPFS parallel filesystem, the HPC resources at CCR have local disks
on the compute nodes and use Isilon network attached storage for
the /projects and /home directories. We collect usage metrics for
all of these filesystems, so these data could easily be added to the
analysis. The two obvious ways to include the extra filesystems
would be to combine all of the filesystem I/O into a single metric and
run the categorization algorithm on that or treat them separately.
The disadvantage of combining all data is that it hides the difference
between read and write operations if the job copies a file from one
filesystem to another. The disadvantage of handling them separately
is the increased amount of data will make analysis more complex.

The I/O data for shared jobs were excluded from this analysis but
shared jobs comprise a reasonable fraction of the resource usage.
For example, in 2017 shared jobs on Rush comprised ~19% of jobs
by core-hour (~41% of jobs by job count). It may be possible to use

PEARC *18, July 22-26, 2018, Pittsburgh, P A, USA

a similar technique as [11] to extract the I/O signatures for a subset
of the shared jobs.

Splitting the job into four sections is equivalent to a very coarse
smoothing of the data. Increasing the number of split points (using
finer grained smoothing) should be able to distinguish between
different types of job within the broader categories. You could also
try using a hill detection algorithm to try to find where the steep
slope is. For example in the case of a START job you might want to
distinguish between a job that performs max rate I/O for a short
period of time verses a job that performs lower rate I/O for a longer
period of time.

ACKNOWLEDGMENTS

The authors would like to thank staff members of the Center for
Computational Research University at Buffalo for their assistance
with the manual classification of the HPC job I/O patterns.

This analysis would not have been possible without the support
and expertise of the XDMoD development team, including Cynthia
Cornelius, Rudra Chakraborty, Steven M. Gallo, Jeffrey T. Palmer,
Benjamin Plessinger, Ryan Rathsam, Nikolay Simakov, Jeanette
Sperhac, and former members Thomas Yearke, Amin Ghadersohi
and Ryan Gentner.

This work was sponsored by the National Science Foundation
(NSF) under award ACI 1445806 for the XD Metrics Service (XMS).

REFERENCES

[1] Anthony Agelastos, Benjamin Allan, Jim Brandt, Paul Cassella, Jeremy Enos, Joshi

Fullop, Ann Gentile, Steve Monk, Nichamon Naksinehaboon, Jeff Ogden, Mahesh

Rajan, Michael Showerman, Joel Stevenson, Narate Taerat, and Tom Tucker.

2014. The Lightweight Distributed Metric Service: A Scalable Infrastructure for

Continuous Monitoring of Large Scale Computing Systems and Applications.

In Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis (SC '14). IEEE Press, Piscataway, NJ, USA, 154—

165. https://doi.org/10.1109/SC.2014.18

Emma S. Buneci and Daniel A. Reed. 2008. Analysis of Application Heartbeats:

Learning Structural and Temporal Features in Time Series Data for Identification

of Performance Problems. In Proceedings of the 2008 ACM/IEEE Conference on

Supercomputing (SC '08). IEEE Press, Piscataway, NJ, USA, Article 52, 12 pages.

[3] Phillip Carns, Robert Latham, Robert Ross, Kamil Iskra, Samuel Lang, and Kather-
ine Riley. 2009. 24/7 Characterization of petascale I/O workloads. In 2009 IEEE
International Conference on Cluster Computing and Workshops. IEEE, Piscataway,
NJ, USA, 1-10. https://doi.org/10.1109/CLUSTR.2009.5289150

[4] University at Buffalo Center for Computational Research. 2016. SUPReMM Job
Summarization Software. https://github.com/ubccr/supremm.

[5] Yan-Tyng Sherry Chang, Henry Jin, and John Bauer. 2016. Methodology and
Application of HPC I/O Characterization with MPIProf and IOT. In Proceedings
of the 5th Workshop on Extreme-Scale Programming Tools (ESPT ’16). IEEE Press,
Piscataway, NJ, USA, 1-8. https://doi.org/10.1109/ESPT.2016.005

[6] Todd Evans, William L. Barth, James C. Browne, Robert L. DeLeon, Thomas R.

Furlani, Steven M. Gallo, Matthew D. Jones, and Abani K. Patra. 2014. Comprehen-

sive Resource Use Monitoring for HPC Systems with TACC_Stats. In Proceedings

of the First International Workshop on HPC User Support Tools (HUST ’14). IEEE

Press, Piscataway, NJ, USA, 13-21. https://doi.org/10.1109/HUST.2014.7

Steven M. Gallo, Joseph P. White, Robert L. DeLeon, Thomas R. Furlani, Helen

Ngo, Abani K. Patra, Matthew D. Jones, Jeffrey T. Palmer, Nikolay Simakov,

Jeanette M. Sperhac, Martins Innus, Thomas Yearke, and Ryan Rathsam. 2015.

Analysis of XDMoD/SUPReMM Data Using Machine Learning Techniques. In

2015 IEEE International Conference on Cluster Computing. IEEE, 642-649. https:

//doi.org/10.1109/CLUSTER.2015.114

James H Horne and Sallie L Baliunas. 1986. A prescription for period analysis

of unevenly sampled time series. The Astrophysical Journal 302 (March 1986),

757-763. https://doi.org/10.1086/164037

[9] iot 2015. IOT FAQ. http://iodoctors.com/faq.html.

[10] H.Jin. 2017. Using MPIProf for performance analysis. http://www.nas.nasa.gov/

hecc/support/kb/using-mpiprof-for-performance-analysis_525.html.

Yang Liu, Raghul Gunasekaran, Xiaosong Ma, and Sudharshan S. Vazhkudai.

2014. Automatic Identification of Application I/O Signatures from Noisy Server-

side Traces. In Proceedings of the 12th USENIX Conference on File and Storage

™
=

[7

[

=

[11

[12]

(13]

[14]

[15

[16

=
=

(18]

[19

[22]

[23]

[24

[25

[26

[27

J. P. White et al.

Technologies (FAST’14). USENIX Association, Berkeley, CA, USA, 213-228. http:
//dLacm.org/citation.cfm?id=2591305.2591326

Y. Liu, R. Gunasekaran, X. Ma, and S. S. Vazhkudai. 2016. Server-Side Log
Data Analytics for I/O Workload Characterization and Coordination on Large
Shared Storage Systems. In SC16: International Conference for High Performance
Computing, Networking, Storage and Analysis. 819-829. https://doi.org/10.1109/
SC.2016.69

N. R. Lomb. 1976. Least-squares frequency analysis of unequally spaced data.
Astrophysics and Space Science 39, 2 (01 Feb. 1976), 447-462. https://doi.org/10.
1007/BF00648343

Huong Luu, Marianne Winslett, William Gropp, Robert Ross, Philip Carns, Kevin
Harms, Mr Prabhat, Suren Byna, and Yushu Yao. 2015. A Multiplatform Study of
1/0 Behavior on Petascale Supercomputers. In Proceedings of the 24th International
Symposium on High-Performance Parallel and Distributed Computing (HPDC ’15).
ACM, New York, NY, USA, 33-44. https://doi.org/10.1145/2749246.2749269
Matthew L Massie, Brent N Chun, and David E Culler. 2004. The ganglia dis-
tributed monitoring system: design, implementation, and experience. Parallel
Comput. 30, 7 (2004), 817 — 840. https://doi.org/10.1016/j.parco.2004.04.001
Dieter an Mey, Scott Biersdorf, Christian Bischof, Kai Diethelm, Dominic Es-
chweiler, Michael Gerndt, Andreas Kniipfer, Daniel Lorenz, Allen Malony, Wolf-
gang E. Nagel, Yury Oleynik, Christian Rossel, Pavel Saviankou, Dirk Schmidl,
Sameer Shende, Michael Wagner, Bert Wesarg, and Felix Wolf. 2012. Score-
P: A Unified Performance Measurement System for Petascale Applications. In
Competence in High Performance Computing 2010, Christian Bischof, Heinz-Gerd
Hegering, Wolfgang E. Nagel, and Gabriel Wittum (Eds.). Springer Berlin Heidel-
berg, Berlin, Heidelberg, 85-97.

Ethan L. Miller and Randy H. Katz. 1991. Input/Output Behavior of Super-
computing Applications. In Proceedings of the 1991 ACM/IEEE Conference on
Supercomputing (Supercomputing '91). ACM, New York, NY, USA, 567-576.
https://doi.org/10.1145/125826.126133

N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Sclatter Ellis, and M. L. Best. 1996.
File-access characteristics of parallel scientific workloads. IEEE Transactions on
Parallel and Distributed Systems 7, 10 (Oct. 1996), 1075-1089. https://doi.org/10.
1109/71.539739

Jeffrey T. Palmer, Steven M. Gallo, Thomas R. Furlani, Matthew D. Jones, Robert L.
DeLeon, Joseph P. White, Nikolay Simakov, Abani K. Patra, Jeanette M. Sperhac,
Thomas Yearke, Ryan Rathsam, Martins Innus, Cynthia D. Cornelius, James C.
Browne, William L. Barth, and Richard T. Evans. 2015. Open XDMoD: A tool
for the comprehensive management of high-performance computing resources.
Computing in Science and Engineering 17, 4 (2015), 52-62. https://doi.org/10.
1109/MCSE.2015.68

B. K. Pasquale and G. C. Polyzos. 1994. Dynamic I/O characterization of I/O
intensive scientific applications. In Proceedings of Supercomputing *94. 660—669.
https://doi.org/10.1109/SUPERC.1994.344330

Emilia Rosti, Giuseppe Serazzi, Evgenia Smirni, and Mark S. Squillante. 2002.
Models of Parallel Applications with Large Computation and I/O Requirements.
IEEE Trans. Softw. Eng. 28, 3 (March 2002), 286-307. https://doi.org/10.1109/32.
991321

J. D. Scargle. 1982. Studies in astronomical time series analysis. II - Statistical
aspects of spectral analysis of unevenly spaced data. The Astrophysical Journal
263 (Dec. 1982), 835-853. https://doi.org/10.1086/160554

Frank Schmuck and Roger Haskin. 2002. GPFS: A Shared-disk File System for
Large Computing Clusters. In Proceedings of the 1st USENIX Conference on File
and Storage Technologies (FAST 02). USENIX Association, Berkeley, CA, USA,
16-16. http://dl.acm.org/citation.cfm?id=1973333.1973349

Silicon Graphics Inc, Aconex, and Red Hat. 2000. Performance Co-Pilot (PCP).
https://pcp.io.

The Astropy Collaboration. 2018. The Astropy Project: Building an inclusive,
open-science project and status of the v2.0 core package. ArXiv e-prints (Jan.
2018). arXiv:astro-ph.IM/1801.02634

Michail Vlachos, Philip Yu, and Vittorio Castelli. 2005. On Pe-
riodicity ~Detection and Structural Periodic Similarity. In Pro-
ceedings of the 2005 SIAM International Conference on Data Min-
ing. SIAM, 449-460. https://doi.org/10.1137/1.9781611972757.40
arXiv:http://epubs.siam.org/doi/pdf/10.1137/1.9781611972757.40

Feng Wang, Qin Xin, Bo Hong, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long,
and Tyce T. Mclarty. 2004. File System Workload Analysis For Large Scientific
Computing Applications. In NASA/IEEE Conference on Mass Storage Systems and
Technologies (MSST 2004). 139-152.

https://doi.org/10.1109/SC.2014.18
https://doi.org/10.1109/CLUSTR.2009.5289150
https://github.com/ubccr/supremm
https://doi.org/10.1109/ESPT.2016.005
https://doi.org/10.1109/HUST.2014.7
https://doi.org/10.1109/CLUSTER.2015.114
https://doi.org/10.1109/CLUSTER.2015.114
https://doi.org/10.1086/164037
http://iodoctors.com/faq.html
http://www.nas.nasa.gov/hecc/support/kb/using-mpiprof-for-performance-analysis_525.html
http://www.nas.nasa.gov/hecc/support/kb/using-mpiprof-for-performance-analysis_525.html
http://dl.acm.org/citation.cfm?id=2591305.2591326
http://dl.acm.org/citation.cfm?id=2591305.2591326
https://doi.org/10.1109/SC.2016.69
https://doi.org/10.1109/SC.2016.69
https://doi.org/10.1007/BF00648343
https://doi.org/10.1007/BF00648343
https://doi.org/10.1145/2749246.2749269
https://doi.org/10.1016/j.parco.2004.04.001
https://doi.org/10.1145/125826.126133
https://doi.org/10.1109/71.539739
https://doi.org/10.1109/71.539739
https://doi.org/10.1109/MCSE.2015.68
https://doi.org/10.1109/MCSE.2015.68
https://doi.org/10.1109/SUPERC.1994.344330
https://doi.org/10.1109/32.991321
https://doi.org/10.1109/32.991321
https://doi.org/10.1086/160554
http://dl.acm.org/citation.cfm?id=1973333.1973349
https://pcp.io
http://arxiv.org/abs/astro-ph.IM/1801.02634
https://doi.org/10.1137/1.9781611972757.40
http://arxiv.org/abs/http://epubs.siam.org/doi/pdf/10.1137/1.9781611972757.40

	Abstract
	1 Introduction
	2 Related Work
	3 CCR Resource Characterization
	4 Job Characterization Techniques
	4.1 Simple job classifier
	4.2 Periodicity Detection

	5 Validation
	6 Results
	6.1 Classification failures

	7 Conclusions
	8 Future Work
	Acknowledgments
	References

