#!/usr/bin/env Rscript library(ggplot2) library(dplyr) require(scales) args = commandArgs(trailingOnly = TRUE) file = "job_similarities_5024292.csv" file = "job_similarities_7488914.csv" file = args[1] data = read.csv(file) # Columns are: jobid alg_id alg_name similarity data$alg_id = as.factor(data$alg_id) print(nrow(data)) # FILTER, TODO data = data %>% filter(similarity <= 1.0) # empirical cummulative density function (ECDF) ggplot(data, aes(similarity, color=alg_name, group=alg_name)) + stat_ecdf(geom = "step") + xlab("SIM") + ylab("Fraction of jobs") + theme(legend.position="bottom") + scale_color_brewer(palette = "Set2") ggsave("ecdf.png") e = data %>% filter(similarity >= 0.5) ggplot(e, aes(similarity, color=alg_name, group=alg_name)) + stat_ecdf(geom = "step") + xlab("SIM") + ylab("Fraction of jobs") + theme(legend.position="bottom") + scale_color_brewer(palette = "Set2") print(summary(e)) ggsave("ecdf-0.5.png") # histogram for the jobs ggplot(data, aes(similarity), group=alg_name) + geom_histogram(color="black", binwidth=0.025) + aes(fill = alg_name) + facet_grid(alg_name ~ ., switch = 'y') + scale_y_continuous(limits=c(0, 100), oob=squish) + scale_color_brewer(palette = "Set2") + ylab("Count (cropped at 100)") ggsave("hist-sim.png") # scale_y_continuous(trans = log2_trans(), breaks = trans_breaks("log2", function(x) 2^x), labels = trans_format("log2", math_format(2^.x))) # stat_summary(aes(linetype = alg_id), fun.y=mean, geom="line") exit(0)