2020-08-18 09:16:49 +00:00
|
|
|
#!/usr/bin/env Rscript
|
|
|
|
|
|
|
|
library('ggplot2')
|
|
|
|
library('ggthemes')
|
|
|
|
library('tidyverse')
|
|
|
|
library('repr')
|
|
|
|
library('jcolors')
|
|
|
|
library("reticulate")
|
|
|
|
|
2020-08-18 09:41:32 +00:00
|
|
|
args <- commandArgs(trailingOnly = TRUE)
|
|
|
|
|
2020-08-18 09:16:49 +00:00
|
|
|
#setwd(source_dir)
|
|
|
|
use_python("/mnt/lustre01/work/ku0598/k202107/software/install/python/3.8.0/bin/python3", required=T)
|
|
|
|
source_python("/work/ku0598/k202107/git/mistral-job-evaluation/scripts/jupyter/r_visual_jobs#pickle_reader.py")
|
|
|
|
|
2020-08-19 16:38:50 +00:00
|
|
|
global = list()
|
2020-08-18 09:16:49 +00:00
|
|
|
global[['source_dir']] = '/work/ku0598/k202107/git/mistral-job-evaluation/data/eval_20200117'
|
|
|
|
global[['eval_dir']] = '../evaluation'
|
2020-08-18 09:33:22 +00:00
|
|
|
global[['fig_dir']] = sprintf('%s/figures/job_visualization', global[['eval_dir']])
|
2020-08-18 09:16:49 +00:00
|
|
|
global[['key']] = 22897682
|
|
|
|
|
|
|
|
config = list()
|
2020-08-18 09:42:46 +00:00
|
|
|
config[['crypted_jobid']] = strtoi(args[1])
|
2020-08-18 09:16:49 +00:00
|
|
|
config[['jobid']] = bitwXor(config[['crypted_jobid']], global[['key']])
|
|
|
|
config[['cat_fn']] = sprintf("%s/600/cats/%s.json", global[['source_dir']], config[['jobid']])
|
|
|
|
config[['raw_fn']] = sprintf('%s/600/jobdata/%s.pkl', global[['source_dir']], config[['jobid']])
|
|
|
|
|
|
|
|
|
|
|
|
graph_config = list()
|
2020-08-19 16:38:50 +00:00
|
|
|
# View
|
|
|
|
graph_config[['cols']] = c('metric', 'host', 'name') # Colorized entities: "name" : file systems; "host" : compute nodes, "metric" : I/O metrics
|
|
|
|
graph_config[['views']] = c('jscore', 'default', 'nscore', 'mscore') # Enable views: 'default', 'jscore', 'nscore', 'mscore'
|
|
|
|
#graph_config[['views']] = c('nscore')
|
|
|
|
graph_config[['n_x_breakpoints']] = 5 # Number of breakpoints on x-axis
|
|
|
|
graph_config[['seg_size']] = 10 # Segments size in minutes
|
2020-08-18 09:16:49 +00:00
|
|
|
|
2020-08-19 16:38:50 +00:00
|
|
|
# Size
|
|
|
|
graph_config[['plot_size']] = list(
|
|
|
|
'default' = list('height'=1, 'width'=10),
|
|
|
|
'jscore' = list('height'=3, 'width'=10),
|
|
|
|
'nscore' = list('height'=1, 'width'=14),
|
|
|
|
'mscore' = list('height'=1, 'width'=1))
|
2020-08-18 09:16:49 +00:00
|
|
|
|
2020-08-19 16:38:50 +00:00
|
|
|
# Dimensions Limits
|
|
|
|
graph_config[['max_dimensions']] = list(
|
|
|
|
'default' = list('seg'=1000, 'host'=13, 'name'=2, 'metric'=9),
|
|
|
|
'jscore' = list('seg'=1000, 'host'=13, 'name'=2, 'metric'=9),
|
2020-10-08 13:36:33 +00:00
|
|
|
'nscore' = list('seg'=1000, 'host'=129, 'name'=2, 'metric'=9),
|
|
|
|
'mscore' = list('seg'=1000, 'host'=129, 'name'=2, 'metric'=9))
|
2020-08-18 09:16:49 +00:00
|
|
|
|
2020-08-19 16:38:50 +00:00
|
|
|
# Legend Limits
|
|
|
|
graph_config[['max_legend_size']] = list(
|
|
|
|
'default' = list('seg'=1000, 'host'=15, 'name'=2, 'metric'=9),
|
|
|
|
'jscore' = list('seg'=1000, 'host'=15, 'name'=2, 'metric'=9),
|
|
|
|
'nscore' = list('seg'=1000, 'host'=15, 'name'=2, 'metric'=9),
|
|
|
|
'mscore' = list('seg'=1000, 'host'=15, 'name'=2, 'metric'=9))
|
2020-08-18 09:16:49 +00:00
|
|
|
|
|
|
|
rename_metrics <- function(data) {
|
|
|
|
data['metric'] <- lapply(data['metric'], gsub, pattern = "host.lustre.", replacement = "", fixed = TRUE)
|
|
|
|
data['metric'] <- lapply(data['metric'], gsub, pattern = "stats.", replacement = "", fixed = TRUE)
|
|
|
|
data['metric'] <- lapply(data['metric'], gsub, pattern = ".bytes", replacement = "_bytes", fixed = TRUE)
|
|
|
|
data['metric'] <- lapply(data['metric'], gsub, pattern = ".calls", replacement = "_calls", fixed = TRUE)
|
|
|
|
return(data)
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2020-08-19 16:38:50 +00:00
|
|
|
|
|
|
|
visualize_categories <- function(fn, gconf, cconf, vconf, data, view, col, x_breakpoints, dims) {
|
2020-08-18 09:16:49 +00:00
|
|
|
# Set legend title
|
|
|
|
if (col == 'host') {
|
|
|
|
gtitle = 'Node'
|
|
|
|
}
|
|
|
|
else if (col == 'metric') {
|
|
|
|
gtitle = 'Metric'
|
|
|
|
}
|
|
|
|
else if (col == 'name') {
|
|
|
|
gtitle = 'File system'
|
|
|
|
}
|
2020-08-19 16:38:50 +00:00
|
|
|
|
|
|
|
title = sprintf('JOBID: %d / %d (M:H:F:S)=(%d:%d:%d:%d)', cconf$jobid, cconf$crypted_jobid, dims$metric, dims$host, dims$name, dims$seg)
|
2020-08-18 09:16:49 +00:00
|
|
|
|
|
|
|
# The palette with black:
|
|
|
|
#cbp2 = c("#000000", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7", "#999999")
|
|
|
|
# General plot
|
|
|
|
p <- (
|
2020-08-19 16:38:50 +00:00
|
|
|
ggplot(data, aes_string(x='seg', y='score', fill=col))
|
2020-08-18 09:16:49 +00:00
|
|
|
#+ geom_bar(stat='summary', fun.y = "mean")
|
2020-08-19 16:38:50 +00:00
|
|
|
+ ggtitle(title)
|
2020-08-18 09:16:49 +00:00
|
|
|
+ geom_bar(stat='identity')
|
|
|
|
+ scale_x_discrete(breaks=x_breakpoints)
|
|
|
|
#+ scale_fill_manual(values= cbp2)
|
|
|
|
#+ geom_line(data=dat,aes(x='rmin', y='value', color="Second line"))
|
|
|
|
+ guides(
|
|
|
|
fill = guide_legend(title=gtitle, nrow=15)
|
|
|
|
)
|
2020-08-19 16:38:50 +00:00
|
|
|
#+ theme(aspect.ratio = 1)
|
2020-08-18 09:16:49 +00:00
|
|
|
+ xlab('Runtime in minutes')
|
|
|
|
+ theme_linedraw()
|
|
|
|
#+ theme_classic()
|
|
|
|
+ theme(
|
|
|
|
#guide_legend.title = element_text('File system'), #element_blank(),
|
|
|
|
#legend.text=element_text(size=6),
|
|
|
|
legend.spacing.y = unit(0, 'cm'),
|
|
|
|
#legend.spacing.x = unit(0, 'cm'),
|
2020-08-19 16:38:50 +00:00
|
|
|
legend.text = element_text(size = 8, margin = margin(t = 1)),
|
2020-08-18 09:16:49 +00:00
|
|
|
strip.text.x = element_text(size = 8, color = "black"),
|
|
|
|
strip.text.y = element_text(size = 8, color = "black"),
|
|
|
|
legend.key = element_rect(size = 1),
|
|
|
|
legend.key.size = unit(0.5, 'lines'),
|
|
|
|
strip.background = element_rect(color="black", fill="#FFFFFF", linetype="solid")
|
|
|
|
# panel.grid.major=element_line(size=0.25, color=alpha('black', 0.25)),
|
|
|
|
# panel.grid.minor=element_line(size=0.25, color=alpha('black', 0.25))
|
|
|
|
)
|
|
|
|
)
|
2020-08-19 16:38:50 +00:00
|
|
|
|
|
|
|
# Dimensions modifier
|
2020-08-18 09:16:49 +00:00
|
|
|
if (col == 'host') {
|
2020-08-19 16:38:50 +00:00
|
|
|
# do nothing
|
2020-08-18 09:16:49 +00:00
|
|
|
}
|
|
|
|
else if (col == 'metric') {
|
|
|
|
p <- (p
|
|
|
|
+ scale_fill_jcolors("pal12")
|
|
|
|
)
|
|
|
|
}
|
|
|
|
else if (col == 'name') {
|
2020-08-19 16:38:50 +00:00
|
|
|
# do nothing
|
2020-08-18 09:16:49 +00:00
|
|
|
}
|
2020-08-19 16:38:50 +00:00
|
|
|
else if (col == 'seg') {
|
|
|
|
# do nothing
|
2020-08-18 09:16:49 +00:00
|
|
|
}
|
2020-08-19 16:38:50 +00:00
|
|
|
|
|
|
|
|
|
|
|
# View modifiers
|
2020-08-18 09:16:49 +00:00
|
|
|
if (view == 'default') {
|
2020-08-19 16:38:50 +00:00
|
|
|
p <- (p
|
|
|
|
+ facet_grid(metric ~ .)
|
|
|
|
+ ylab('Score')
|
|
|
|
+ theme(
|
|
|
|
strip.text.y = element_text(angle=0)
|
|
|
|
)
|
|
|
|
)
|
|
|
|
# Disable legend if dimensions are too large
|
|
|
|
if (dims[[col]] > vconf$max_legend_size[[view]][[col]]) {
|
|
|
|
p <- p + theme (legend.position='none')
|
|
|
|
}
|
|
|
|
ggsave(fn, width=vconf$plot_size[[view]][['width']], height=vconf$plot_size[[view]][['height']] * dims[['metric']])
|
|
|
|
}
|
|
|
|
else if (view == 'jscore') {
|
|
|
|
p <- (p
|
|
|
|
+ ylab('JScore')
|
|
|
|
+ theme (
|
|
|
|
strip.text.y = element_text(angle=0),
|
|
|
|
)
|
2020-08-18 09:16:49 +00:00
|
|
|
)
|
2020-08-19 16:38:50 +00:00
|
|
|
# Disable legend if dimensions are too large
|
|
|
|
if (dims[[col]] > vconf$max_legend_size[[view]][[col]]) {
|
|
|
|
p <- p + theme (legend.position='none')
|
|
|
|
}
|
|
|
|
ggsave(fn, width=vconf$plot_size[[view]][['width']], height=vconf$plot_size[[view]][['height']])
|
2020-08-18 09:16:49 +00:00
|
|
|
}
|
|
|
|
else if (view == 'nscore') {
|
|
|
|
p <- (
|
|
|
|
p
|
|
|
|
+ facet_grid(host ~ .)
|
|
|
|
+ ylab('NScore')
|
|
|
|
+ theme(
|
2020-08-19 16:38:50 +00:00
|
|
|
strip.text.y = element_text(angle=0),
|
|
|
|
aspect.ratio = vconf$plot_size$nscore$height / vconf$plot_size$nscore$width,
|
|
|
|
#legend.position='bottom'
|
2020-08-18 09:16:49 +00:00
|
|
|
)
|
|
|
|
)
|
2020-08-19 16:38:50 +00:00
|
|
|
# Disable legend if dimensions are too large
|
|
|
|
if (dims[[col]] > vconf$max_legend_size[[view]][[col]]) {
|
|
|
|
p <- p + theme (legend.position='none')
|
2020-08-18 09:16:49 +00:00
|
|
|
}
|
2020-08-19 16:38:50 +00:00
|
|
|
extra_space = 2
|
|
|
|
ggsave(fn, width=vconf$plot_size[[view]][['width']], height=vconf$plot_size[[view]][['height']] * (dims[['host']] + extra_space))
|
2020-08-18 09:16:49 +00:00
|
|
|
}
|
|
|
|
else if (view == 'mscore') {
|
|
|
|
p <- (
|
|
|
|
p
|
|
|
|
+ facet_grid(host ~ metric)
|
2020-08-19 16:38:50 +00:00
|
|
|
#+ coord_fixed(ratio=dims[['host']]/dims[['metric']])
|
|
|
|
#+ coord_fixed(ratio=dims[['metric']]/dims[['host']])
|
|
|
|
#+ coord_fixed(ratio=1)
|
2020-08-18 09:16:49 +00:00
|
|
|
+ ylab('MScore')
|
|
|
|
+ theme(
|
2020-08-19 16:38:50 +00:00
|
|
|
axis.text.x = element_text(angle=90, hjust=1),
|
|
|
|
aspect.ratio = 1,
|
2020-08-18 09:16:49 +00:00
|
|
|
)
|
|
|
|
)
|
2020-08-19 16:38:50 +00:00
|
|
|
# Disable legend if dimensions are too large
|
|
|
|
if (dims[[col]] > vconf$max_legend_size[[view]][[col]]) {
|
|
|
|
p <- p + theme (legend.position='none')
|
|
|
|
}
|
|
|
|
extra_space = 2
|
|
|
|
ggsave(fn, width=vconf$plot_size[[view]][['width']] * dims[['metric']], height=vconf$plot_size[[view]][['height']] * (dims[['host']] + extra_space))
|
2020-08-18 09:16:49 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2020-08-19 16:38:50 +00:00
|
|
|
# Check if dimensions exceed limits
|
|
|
|
exceeds_limits <- function(view, dims, graph_config) {
|
|
|
|
max_dims <- graph_config$max_dimensions[[view]]
|
|
|
|
if ((dims[['seg']] > max_dims[['seg']])) {
|
|
|
|
return(T)
|
|
|
|
}
|
|
|
|
if (view == 'default') {
|
|
|
|
if ((dims[['metric']] > max_dims[['metric']])) {
|
|
|
|
return(T)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if (view == 'jscore') {
|
|
|
|
}
|
|
|
|
else if (view == 'nscore') {
|
|
|
|
if ((dims[['host']] > max_dims[['host']])) {
|
|
|
|
return(T)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if (view == 'mscore') {
|
|
|
|
if ((dims[['host']] > max_dims[['host']]) || dims[['metric']] > max_dims[['metric']]) {
|
|
|
|
return(T)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
print("Unknown view")
|
|
|
|
exit(1)
|
|
|
|
}
|
|
|
|
return(F)
|
|
|
|
}
|
|
|
|
|
2020-08-18 09:16:49 +00:00
|
|
|
|
|
|
|
|
|
|
|
# Create 10 minutes segments
|
|
|
|
cat_data <- rename_metrics(read.csv(config[['cat_fn']])) # categorized data
|
|
|
|
cat_data['rmin'] = cat_data['runtime'] / 60 # runtime in minutes
|
|
|
|
duration = max(ceiling(cat_data['rmin']))
|
|
|
|
bins = seq(0, duration, graph_config[['seg_size']] )
|
|
|
|
|
|
|
|
d2 <- cat_data %>%
|
|
|
|
group_by(cat) %>%
|
2020-08-19 16:38:50 +00:00
|
|
|
mutate(seg = cut(rmin, breaks = bins, labels = bins[-1]))
|
2020-08-18 09:16:49 +00:00
|
|
|
d3 <- d2 %>%
|
2020-08-19 16:38:50 +00:00
|
|
|
group_by(name, metric, host, seg) %>%
|
2020-08-18 09:16:49 +00:00
|
|
|
summarise(score = sum(cat))
|
|
|
|
|
2020-08-19 16:38:50 +00:00
|
|
|
dimensions = list()
|
|
|
|
dimensions[['metric']] <- length(unique(d3$metric))
|
|
|
|
dimensions[['name']] <- length(unique(d3$name))
|
|
|
|
dimensions[['host']] <- length(unique(d3$host))
|
|
|
|
dimensions[['seg']] <- length(unique(d3$seg))
|
|
|
|
|
|
|
|
x_breakpoints <- bins[seq(1, length(bins), dimensions[['seg']]/graph_config[['n_x_breakpoints']]+1)]
|
|
|
|
#x_breakpoints[length(x_breakpoints)+1] <- (dimensions[['seg']]-0)*10
|
|
|
|
|
|
|
|
out_dir = sprintf('%s/%d_%d', global[['fig_dir']], config[['jobid']], config[['crypted_jobid']])
|
|
|
|
dir.create(out_dir, recursive=TRUE)
|
|
|
|
|
|
|
|
|
2020-08-18 09:16:49 +00:00
|
|
|
|
|
|
|
for (col in graph_config[['cols']]) {
|
|
|
|
for (view in graph_config[['views']]) {
|
2020-08-19 16:38:50 +00:00
|
|
|
fn = sprintf('%s/%s_%s.png', out_dir, view, col)
|
|
|
|
fn_skip = sprintf("%s.skip", fn)
|
|
|
|
|
|
|
|
if (exceeds_limits(view, dimensions, graph_config)) {
|
|
|
|
if (file.exists(fn)) {
|
|
|
|
file.remove(fn)
|
|
|
|
}
|
|
|
|
f_skip<-file(fn_skip)
|
|
|
|
writeLines(c("dimensions too large"), f_skip)
|
|
|
|
close(f_skip)
|
|
|
|
print(sprintf('Skipping %s', fn))
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
if (file.exists(fn_skip)) {
|
|
|
|
file.remove(fn_skip)
|
|
|
|
}
|
|
|
|
print(sprintf('Processing %s', fn))
|
|
|
|
visualize_categories(fn, global, config, graph_config, d3, view, col, x_breakpoints, dimensions)
|
|
|
|
}
|
2020-08-18 09:16:49 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
## TODO
|
|
|
|
#visualize_rawdata <- function(data) {
|
|
|
|
#}
|
|
|
|
|
|
|
|
#pickle_data <- rename_metrics(read_pickle_file(config[['raw_fn']])) # raw data
|
|
|
|
#print(head(pickle_data))
|
|
|
|
#offset = min(pickle_data$timestamp)
|
|
|
|
#dat = pickle_data[complete.cases(pickle_data),]
|
|
|
|
#dat$runtime = dat$timestamp - offset
|
|
|
|
#dat['rmin'] = dat['runtime'] / 60 # runtime in minutes
|
|
|
|
|
|
|
|
#visualize_rawdata(dat)
|
|
|
|
|