2020-08-21 16:21:33 +00:00
#!/usr/bin/env Rscript
library ( ggplot2 )
library ( dplyr )
require ( scales )
2020-08-25 17:00:28 +00:00
args = commandArgs ( trailingOnly = TRUE )
file = " datasets/progress_4296426.csv" # for manual execution
file = args [1 ]
prefix = args [2 ]
2020-08-21 16:21:33 +00:00
2020-08-25 17:00:28 +00:00
# Plot the performance numbers of the analysis
data = read.csv ( file )
2020-08-21 16:21:33 +00:00
e = data %>% filter ( jobs_done >= ( jobs_total - 9998 ) )
2020-08-25 17:00:28 +00:00
e $ time_per_100k = e $ elapsed / ( e $ jobs_done / 100000 )
2020-08-25 17:29:23 +00:00
ggplot ( e , aes ( alg_name , time_per_100k , fill = alg_name ) ) + geom_boxplot ( ) + theme ( legend.position = c ( 0.2 , 0.7 ) ) + xlab ( " Algorithm" ) + ylab ( " Runtime in s per 100k jobs" ) + stat_summary ( aes ( label = round ( ..y.. , 0 ) ) , position = position_nudge ( x = 0 , y = 200 ) , fun = mean , geom = " text" , size = 4 ) + theme ( legend.title = element_blank ( ) )
ggsave ( paste ( prefix , " -boxplot.png" , sep = " " ) , width = 4 , height = 4 )
2020-08-25 17:00:28 +00:00
# Development when adding more jobs
ggplot ( data , aes ( x = jobs_done , y = elapsed , color = alg_name ) ) + geom_point ( ) + ylab ( " Cummulative runtime in s" ) + xlab ( " Jobs processed" ) + theme ( legend.position = " bottom" ) #+ scale_x_log10() + scale_y_log10()
ggsave ( paste ( prefix , " -cummulative.png" , sep = " " ) , width = 6 , height = 4.5 )