Kolmogorov-Smirnov metric-wise similarity
This commit is contained in:
parent
cd307c98da
commit
0545f89fc2
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -40,7 +40,11 @@ pub fn test<T: Ord + Clone>(xs: &[T], ys: &[T], confidence: f64) -> Result<TestR
|
|||
assert!(0.0 < confidence && confidence < 1.0);
|
||||
|
||||
// Only supports samples of size > 7.
|
||||
assert!(xs.len() > 7 && ys.len() > 7);
|
||||
//assert!(xs.len() > 7 && ys.len() > 7);
|
||||
|
||||
if xs.len() > 7 && ys.len() > 7 {
|
||||
return Err(String::from("Assertion violated: xs.len() > 7 && ys.len() > 7"));
|
||||
}
|
||||
|
||||
let statistic = calculate_statistic(xs, ys);
|
||||
let critical_value = calculate_critical_value(xs.len(), ys.len(), confidence)?;
|
||||
|
@ -198,7 +202,11 @@ fn calculate_statistic<T: Ord + Clone>(xs: &[T], ys: &[T]) -> f64 {
|
|||
/// evidence exceeds the confidence level required.
|
||||
fn calculate_reject_probability(statistic: f64, n1: usize, n2: usize) -> Result<f64, String> {
|
||||
// Only supports samples of size > 7.
|
||||
assert!(n1 > 7 && n2 > 7);
|
||||
// assert!(n1 > 7 && n2 > 7);
|
||||
|
||||
if n1 > 7 && n2 > 7 {
|
||||
return Err(String::from("Assertion violated: n1 > 7 && n2 > 7"));
|
||||
}
|
||||
|
||||
let n1 = n1 as f64;
|
||||
let n2 = n2 as f64;
|
||||
|
@ -234,7 +242,10 @@ pub fn calculate_critical_value(n1: usize, n2: usize, confidence: f64) -> Result
|
|||
assert!(0.0 < confidence && confidence < 1.0);
|
||||
|
||||
// Only supports samples of size > 7.
|
||||
assert!(n1 > 7 && n2 > 7);
|
||||
//assert!(n1 > 7 && n2 > 7);
|
||||
if n1 > 7 && n2 > 7 {
|
||||
return Err(String::from("Assertion violated: n1 > 7 && n2 > 7"));
|
||||
}
|
||||
|
||||
// The test statistic is between zero and one so can binary search quickly
|
||||
// for the critical value.
|
||||
|
|
|
@ -40,17 +40,30 @@ pub struct SimilarityRow {
|
|||
pub jobid: u32,
|
||||
pub alg_id: u32,
|
||||
pub alg_name: String,
|
||||
pub similarity: f32
|
||||
pub similarity: f32,
|
||||
pub status: String,
|
||||
}
|
||||
|
||||
//#[derive(Debug, Serialize)]
|
||||
//pub struct ProgressRow {
|
||||
// jobid: u32,
|
||||
// alg_id: u32,
|
||||
// alg_name: String,
|
||||
// delta: i64,
|
||||
//}
|
||||
|
||||
#[derive(Debug, Serialize)]
|
||||
pub struct ProgressRow {
|
||||
jobid: u32,
|
||||
iteration: u32,
|
||||
alg_id: u32,
|
||||
alg_name: String,
|
||||
delta: i64,
|
||||
jobs_done: usize,
|
||||
jobs_total: usize,
|
||||
elapsed: f64,
|
||||
delta: f64,
|
||||
}
|
||||
|
||||
|
||||
pub fn convert_to_coding(coding: String) -> Vec<Score> {
|
||||
let split = coding.split(":");
|
||||
let vec: Vec<Score> = split
|
||||
|
@ -112,31 +125,35 @@ fn run(dataset_fn: String, jobid: Jobid, similarities_fn: String, progress_fn: S
|
|||
|
||||
let mut avail_codings: Vec<(u32, &JobCoding)>;
|
||||
avail_codings = q_codings.iter().map(|(k, v)| (*k, v)).collect();
|
||||
let mut similarities: Vec<(Jobid, Similarity)> = Vec::new();
|
||||
let mut similarities: Vec<(Jobid, Similarity, bool)> = Vec::new();
|
||||
|
||||
let log_file = File::create(&log_fn).expect("Unable to open");
|
||||
let mut log_file = LineWriter::new(log_file);
|
||||
|
||||
|
||||
let probe = q_codings[&jobid].clone();
|
||||
let mut start = chrono::Utc::now();
|
||||
let mut start_chunk = chrono::Utc::now();
|
||||
let start = start_chunk;
|
||||
while let Some((jobid, q_coding)) = avail_codings.pop() {
|
||||
if (counter % 10_000) == 0 {
|
||||
let stop = chrono::Utc::now();
|
||||
let stop_chunk = chrono::Utc::now();
|
||||
let progress_row = ProgressRow {
|
||||
jobid: jobid,
|
||||
iteration: 0,
|
||||
alg_id: alg_id,
|
||||
alg_name: String::from(alg_name),
|
||||
delta: ((stop - start).num_nanoseconds().unwrap())
|
||||
jobs_done: counter,
|
||||
jobs_total: q_codings.len(),
|
||||
elapsed: (((stop_chunk - start).num_milliseconds() as f64) / 1000.0),
|
||||
delta: (((stop_chunk - start_chunk).num_milliseconds() as f64) / 1000.0),
|
||||
};
|
||||
wtr_progress.serialize(progress_row).unwrap();
|
||||
start = stop;
|
||||
start_chunk = stop_chunk;
|
||||
}
|
||||
|
||||
//println!("Processing {:?}", jobid);
|
||||
//let similarity = ks_similarity(q_coding, &probe);
|
||||
|
||||
let mut metric_similarities = vec![];
|
||||
let mut err = false;
|
||||
|
||||
let confidence = 0.95;
|
||||
for metric_codings in q_coding.iter().zip(&probe) {
|
||||
|
@ -145,36 +162,32 @@ fn run(dataset_fn: String, jobid: Jobid, similarities_fn: String, progress_fn: S
|
|||
(1.0 - sim.reject_probability) as Similarity
|
||||
}
|
||||
Err(e) => {
|
||||
let message = format!("jobid failed {:?}, because \" {:?}\"\n", jobid, e);
|
||||
err = true;
|
||||
let message = format!("jobid failed {:?}, because {:?}\n", jobid, e);
|
||||
log_file.write_all(message.as_bytes()).unwrap();
|
||||
1.0
|
||||
0.0
|
||||
}
|
||||
};
|
||||
metric_similarities.push(metric_similarity);
|
||||
}
|
||||
let similarity = metric_similarities.iter().sum::<f32>() / (metric_similarities.len() as f32);
|
||||
|
||||
//let similarity = match ks::test(q_coding, &probe, confidence) {
|
||||
// Ok(sim) => {
|
||||
// (1.0 - sim.reject_probability) as Similarity,
|
||||
// }
|
||||
// Err(e) => {
|
||||
// let message = format!("jobid failed {:?}, because \" {:?}\"\n", jobid, e);
|
||||
// log_file.write_all(message.as_bytes()).unwrap();
|
||||
// 1.0
|
||||
// }
|
||||
//};
|
||||
|
||||
similarities.push((jobid, similarity));
|
||||
similarities.push((jobid, similarity, err));
|
||||
counter += 1;
|
||||
}
|
||||
|
||||
for (jobid, similarity) in similarities.iter() {
|
||||
|
||||
let mut status_map: HashMap<bool, String> = HashMap::new();
|
||||
status_map.insert(false, String::from("ok"));
|
||||
status_map.insert(true, String::from("failed"));
|
||||
|
||||
for (jobid, similarity, err) in similarities.iter() {
|
||||
let similarity_row = SimilarityRow {
|
||||
jobid: *jobid,
|
||||
alg_id: alg_id,
|
||||
alg_name: String::from(alg_name),
|
||||
similarity: *similarity,
|
||||
status: status_map[err].clone(),
|
||||
};
|
||||
wtr_similarities.serialize(similarity_row).unwrap();
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue