Mehr text
This commit is contained in:
parent
554944e4a0
commit
0a581098bb
165
paper/main.tex
165
paper/main.tex
|
@ -296,7 +296,7 @@ In \Cref{fig:job-L}, the mean value is mostly rounded down to 0 except for the f
|
||||||
\begin{subfigure}{0.8\textwidth}
|
\begin{subfigure}{0.8\textwidth}
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=\textwidth]{job-timeseries7488914-30}
|
\includegraphics[width=\textwidth]{job-timeseries7488914-30}
|
||||||
\caption{Job-L (first 30 segments of 400; remaining segments are similar)}
|
\caption{Job-L (first 30 segments of 400; remaining segments are zero)}
|
||||||
\label{fig:job-L}
|
\label{fig:job-L}
|
||||||
\end{subfigure}
|
\end{subfigure}
|
||||||
\centering
|
\centering
|
||||||
|
@ -734,6 +734,29 @@ The number of unique names is 19, 38, 49, and 51 for BIN\_aggzero, HEX\_phases,
|
||||||
The jobs that are similar according to the bin algorithms (see \Cref{fig:job-M-bin-aggzero}) differ from our expectations.
|
The jobs that are similar according to the bin algorithms (see \Cref{fig:job-M-bin-aggzero}) differ from our expectations.
|
||||||
The other algorithms like HEX\_lev (\Cref{fig:job-M-hex-lev}) and HEX\_native (\Cref{fig:job-M-hex-native}) seem to work as intended:
|
The other algorithms like HEX\_lev (\Cref{fig:job-M-hex-lev}) and HEX\_native (\Cref{fig:job-M-hex-native}) seem to work as intended:
|
||||||
While jobs exhibit short bursts of other active metrics even for low similarity we can eyeball a relevant similarity.
|
While jobs exhibit short bursts of other active metrics even for low similarity we can eyeball a relevant similarity.
|
||||||
|
The KS algorithm working on the histograms ranks the jobs correctly on the similarity of their histograms.
|
||||||
|
However, as it does not deal with the length of the jobs, it may identify jobs of very different length.
|
||||||
|
In \Cref{fig:job-M-ks}, we see the 3rd ranked job, which profile is indeed quite similar but the time series differs but it is just running for 10min (1 segment) on 10\,nodes.
|
||||||
|
Remember, for the KS algorithm, we concatenate the metrics of all nodes together instead of averaging it in order to explore if node-specific information helps to draw further information about similarity.
|
||||||
|
|
||||||
|
\begin{figure}[bt]
|
||||||
|
\begin{subfigure}{0.5\textwidth}
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\textwidth]{job_similarities_5024292-out/ks-0.7863--ks-2hist7827264}
|
||||||
|
\caption{Histogram}
|
||||||
|
\end{subfigure}
|
||||||
|
\qquad
|
||||||
|
\begin{subfigure}{0.36\textwidth}
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\textwidth]{job_similarities_5024292-out/ks-0.7863--ks-2timeseries7827264}
|
||||||
|
\caption{Concatenated time series}
|
||||||
|
\end{subfigure}
|
||||||
|
|
||||||
|
\caption{Job-M with KS, for Rank\,3, SIM=78\%}
|
||||||
|
\label{fig:job-M-ks}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\begin{figure}[bt]
|
\begin{figure}[bt]
|
||||||
|
@ -818,37 +841,43 @@ While jobs exhibit short bursts of other active metrics even for low similarity
|
||||||
\label{fig:job-M-hex-native}
|
\label{fig:job-M-hex-native}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
|
%
|
||||||
\begin{figure}[bt]
|
% \begin{figure}[bt]
|
||||||
\begin{subfigure}{0.3\textwidth}
|
% \begin{subfigure}{0.3\textwidth}
|
||||||
\centering
|
% \centering
|
||||||
\includegraphics[width=\textwidth]{job_similarities_5024292-out/hex_phases-0.8831--1timeseries7826634}
|
% \includegraphics[width=\textwidth]{job_similarities_5024292-out/hex_phases-0.8831--1timeseries7826634}
|
||||||
\caption{Rank 2, SIM=88\%}
|
% \caption{Rank 2, SIM=88\%}
|
||||||
\end{subfigure}
|
% \end{subfigure}
|
||||||
\begin{subfigure}{0.3\textwidth}
|
% \begin{subfigure}{0.3\textwidth}
|
||||||
\centering
|
% \centering
|
||||||
\includegraphics[width=\textwidth]{job_similarities_5024292-out/hex_phases-0.7963--2timeseries5240733}
|
% \includegraphics[width=\textwidth]{job_similarities_5024292-out/hex_phases-0.7963--2timeseries5240733}
|
||||||
\caption{Rank 3, SIM=80\%}
|
% \caption{Rank 3, SIM=80\%}
|
||||||
\end{subfigure}
|
% \end{subfigure}
|
||||||
\begin{subfigure}{0.3\textwidth}
|
% \begin{subfigure}{0.3\textwidth}
|
||||||
\includegraphics[width=\textwidth]{job_similarities_5024292-out/hex_phases-0.4583--14timeseries4244400}
|
% \includegraphics[width=\textwidth]{job_similarities_5024292-out/hex_phases-0.4583--14timeseries4244400}
|
||||||
\caption{Rank 15, SIM=46\%}
|
% \caption{Rank 15, SIM=46\%}
|
||||||
\end{subfigure}
|
% \end{subfigure}
|
||||||
\begin{subfigure}{0.3\textwidth}
|
% \begin{subfigure}{0.3\textwidth}
|
||||||
\centering
|
% \centering
|
||||||
\includegraphics[width=\textwidth]{job_similarities_5024292-out/hex_phases-0.2397--99timeseries7644009}
|
% \includegraphics[width=\textwidth]{job_similarities_5024292-out/hex_phases-0.2397--99timeseries7644009}
|
||||||
\caption{Rank 100, SIM=24\%}
|
% \caption{Rank 100, SIM=24\%}
|
||||||
\end{subfigure}
|
% \end{subfigure}
|
||||||
|
%
|
||||||
\caption{Job-M with HEX\_phases, selection of similar jobs}
|
% \caption{Job-M with HEX\_phases, selection of similar jobs}
|
||||||
\label{fig:job-M-hex-phases}
|
% \label{fig:job-M-hex-phases}
|
||||||
\end{figure}
|
% \end{figure}
|
||||||
|
|
||||||
\subsection{Job-L}
|
\subsection{Job-L}
|
||||||
|
|
||||||
For the bin algorithms, the inspection of job names (14 unique names) leads to two prominent applications: bash and xmessy with 45 and 48 instances, respectively.
|
The bin algorithms find a low similarity (best 2nd ranked job is 17\% similar), the inspection of job names (14 unique names) leads to two prominent applications: bash and xmessy with 45 and 48 instances, respectively.
|
||||||
The hex algorithms identify a more diverse set of applications (18 unique names and no xmessy job), and the HEX\_phases algorithm has 85 unique names.
|
In \Cref{fig:job-L-bin-aggzero}, it can be seen that the found jobs have little in common with the reference job.
|
||||||
The KS algorithm finds 71 jobs ending with t127, which is a typical model configuration.
|
|
||||||
|
The HEX\_lev and HEX\_native algorithms identify a more diverse set of applications (18 unique names and no xmessy job).
|
||||||
|
HEX\_native \Cref{fig:job-L-hex-native} finds long jobs where the only few activity as our reference job.
|
||||||
|
The HEX\_phases algorithm finds 85 unique names but as there is only one short IO phase in the reference job, it finds many (short) jobs with 100\% similarity as seen in \Cref{fig:job-L-hex-phases}.
|
||||||
|
The KS algorithm is even more inclusive having 1285 jobs with 100\% similarity; the 100 selected ones contain 71 jobs ending with t127, which is a typical model configuration.
|
||||||
|
As expected, the histograms mimics the profile of the reference job, and thus, the algorithm does what it is expected to do.
|
||||||
|
|
||||||
|
|
||||||
\begin{figure}[bt]
|
\begin{figure}[bt]
|
||||||
\begin{subfigure}{0.3\textwidth}
|
\begin{subfigure}{0.3\textwidth}
|
||||||
|
@ -856,11 +885,11 @@ The KS algorithm finds 71 jobs ending with t127, which is a typical model config
|
||||||
\includegraphics[width=\textwidth]{job_similarities_7488914-out/bin_aggzeros-0.1671--1timeseries7869050}
|
\includegraphics[width=\textwidth]{job_similarities_7488914-out/bin_aggzeros-0.1671--1timeseries7869050}
|
||||||
\caption{Rank 2, SIM=17\%}
|
\caption{Rank 2, SIM=17\%}
|
||||||
\end{subfigure}
|
\end{subfigure}
|
||||||
\begin{subfigure}{0.3\textwidth}
|
% \begin{subfigure}{0.3\textwidth}
|
||||||
\centering
|
% \centering
|
||||||
\includegraphics[width=\textwidth]{job_similarities_7488914-out/bin_aggzeros-0.1671--2timeseries7990497}
|
% \includegraphics[width=\textwidth]{job_similarities_7488914-out/bin_aggzeros-0.1671--2timeseries7990497}
|
||||||
\caption{Rank 3, SIM=17\%}
|
% \caption{Rank 3, SIM=17\%}
|
||||||
\end{subfigure}
|
% \end{subfigure}
|
||||||
\begin{subfigure}{0.3\textwidth}
|
\begin{subfigure}{0.3\textwidth}
|
||||||
\includegraphics[width=\textwidth]{job_similarities_7488914-out/bin_aggzeros-0.1521--14timeseries8363584}
|
\includegraphics[width=\textwidth]{job_similarities_7488914-out/bin_aggzeros-0.1521--14timeseries8363584}
|
||||||
\caption{Rank 15, SIM=15\%}
|
\caption{Rank 15, SIM=15\%}
|
||||||
|
@ -875,31 +904,31 @@ The KS algorithm finds 71 jobs ending with t127, which is a typical model config
|
||||||
\label{fig:job-L-bin-aggzero}
|
\label{fig:job-L-bin-aggzero}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
|
%
|
||||||
\begin{figure}[bt]
|
% \begin{figure}[bt]
|
||||||
\begin{subfigure}{0.3\textwidth}
|
% \begin{subfigure}{0.3\textwidth}
|
||||||
\centering
|
% \centering
|
||||||
\includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_lev-0.9386--1timeseries7266845}
|
% \includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_lev-0.9386--1timeseries7266845}
|
||||||
\caption{Rank 2, SIM=94\%}
|
% \caption{Rank 2, SIM=94\%}
|
||||||
\end{subfigure}
|
% \end{subfigure}
|
||||||
\begin{subfigure}{0.3\textwidth}
|
% \begin{subfigure}{0.3\textwidth}
|
||||||
\centering
|
% \centering
|
||||||
\includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_lev-0.9375--2timeseries7214657}
|
% \includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_lev-0.9375--2timeseries7214657}
|
||||||
\caption{Rank 3, SIM=94\%}
|
% \caption{Rank 3, SIM=94\%}
|
||||||
\end{subfigure}
|
% \end{subfigure}
|
||||||
\begin{subfigure}{0.3\textwidth}
|
% \begin{subfigure}{0.3\textwidth}
|
||||||
\includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_lev-0.7251--14timeseries4341304}
|
% \includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_lev-0.7251--14timeseries4341304}
|
||||||
\caption{Rank 15, SIM=73\%}
|
% \caption{Rank 15, SIM=73\%}
|
||||||
\end{subfigure}
|
% \end{subfigure}
|
||||||
\begin{subfigure}{0.3\textwidth}
|
% % \begin{subfigure}{0.3\textwidth}
|
||||||
\centering
|
% % \centering
|
||||||
\includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_lev-0.1657--99timeseries8036223}
|
% % \includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_lev-0.1657--99timeseries8036223}
|
||||||
\caption{Rank 100, SIM=17\%}
|
% % \caption{Rank 100, SIM=17\%}
|
||||||
\end{subfigure}
|
% % \end{subfigure}
|
||||||
|
%
|
||||||
\caption{Job-L with HEX\_lev, selection of similar jobs}
|
% \caption{Job-L with HEX\_lev, selection of similar jobs}
|
||||||
\label{fig:job-L-hex-lev}
|
% \label{fig:job-L-hex-lev}
|
||||||
\end{figure}
|
% \end{figure}
|
||||||
|
|
||||||
|
|
||||||
\begin{figure}[bt]
|
\begin{figure}[bt]
|
||||||
|
@ -917,11 +946,11 @@ The KS algorithm finds 71 jobs ending with t127, which is a typical model config
|
||||||
\includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_native-0.8708--14timeseries4936553}
|
\includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_native-0.8708--14timeseries4936553}
|
||||||
\caption{Rank 15, SIM=87\%}
|
\caption{Rank 15, SIM=87\%}
|
||||||
\end{subfigure}
|
\end{subfigure}
|
||||||
\begin{subfigure}{0.3\textwidth}
|
% \begin{subfigure}{0.3\textwidth}
|
||||||
\centering
|
% \centering
|
||||||
\includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_native-0.1695--99timeseries7942052}
|
% \includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_native-0.1695--99timeseries7942052}
|
||||||
\caption{Rank 100, SIM=17\%}
|
% \caption{Rank 100, SIM=17\%}
|
||||||
\end{subfigure}
|
% \end{subfigure}
|
||||||
|
|
||||||
\caption{Job-L with HEX\_native, selection of similar jobs}
|
\caption{Job-L with HEX\_native, selection of similar jobs}
|
||||||
\label{fig:job-L-hex-native}
|
\label{fig:job-L-hex-native}
|
||||||
|
@ -938,10 +967,10 @@ The KS algorithm finds 71 jobs ending with t127, which is a typical model config
|
||||||
\includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_phases-1.0000--1timeseries4405671}
|
\includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_phases-1.0000--1timeseries4405671}
|
||||||
\caption{Rank 3, SIM=100\%}
|
\caption{Rank 3, SIM=100\%}
|
||||||
\end{subfigure}
|
\end{subfigure}
|
||||||
\begin{subfigure}{0.3\textwidth}
|
% \begin{subfigure}{0.3\textwidth}
|
||||||
\includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_phases-1.0000--2timeseries4621422}
|
% \includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_phases-1.0000--2timeseries4621422}
|
||||||
\caption{Rank 15, SIM=100\%}
|
% \caption{Rank 15, SIM=100\%}
|
||||||
\end{subfigure}
|
% \end{subfigure}
|
||||||
\begin{subfigure}{0.3\textwidth}
|
\begin{subfigure}{0.3\textwidth}
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_phases-1.0000--99timeseries4232293}
|
\includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_phases-1.0000--99timeseries4232293}
|
||||||
|
|
Loading…
Reference in New Issue