Mehr text
This commit is contained in:
		
							parent
							
								
									554944e4a0
								
							
						
					
					
						commit
						0a581098bb
					
				
							
								
								
									
										165
									
								
								paper/main.tex
									
									
									
									
									
								
							
							
						
						
									
										165
									
								
								paper/main.tex
									
									
									
									
									
								
							| @ -296,7 +296,7 @@ In \Cref{fig:job-L}, the mean value is mostly rounded down to 0 except for the f | ||||
| \begin{subfigure}{0.8\textwidth} | ||||
| \centering | ||||
| \includegraphics[width=\textwidth]{job-timeseries7488914-30} | ||||
| \caption{Job-L (first 30 segments of 400; remaining segments are similar)} | ||||
| \caption{Job-L (first 30 segments of 400; remaining segments are zero)} | ||||
| \label{fig:job-L} | ||||
| \end{subfigure} | ||||
| \centering | ||||
| @ -734,6 +734,29 @@ The number of unique names is 19, 38, 49, and 51 for BIN\_aggzero, HEX\_phases, | ||||
| The jobs that are similar according to the bin algorithms (see \Cref{fig:job-M-bin-aggzero}) differ from our expectations. | ||||
| The other algorithms like HEX\_lev (\Cref{fig:job-M-hex-lev}) and HEX\_native (\Cref{fig:job-M-hex-native}) seem to work as intended: | ||||
| While jobs exhibit short bursts of other active metrics even for low similarity we can eyeball a relevant similarity. | ||||
| The KS algorithm working on the histograms ranks the jobs correctly on the similarity of their histograms. | ||||
| However, as it does not deal with the length of the jobs, it may identify jobs of very different length. | ||||
| In \Cref{fig:job-M-ks}, we see the 3rd ranked job, which profile is indeed quite similar but the time series differs but it is just running for 10min (1 segment) on 10\,nodes. | ||||
| Remember, for the KS algorithm, we concatenate the metrics of all nodes together instead of averaging it in order to explore if node-specific information helps to draw further information about similarity. | ||||
| 
 | ||||
| \begin{figure}[bt] | ||||
| \begin{subfigure}{0.5\textwidth} | ||||
| \centering | ||||
| \includegraphics[width=\textwidth]{job_similarities_5024292-out/ks-0.7863--ks-2hist7827264} | ||||
| \caption{Histogram} | ||||
| \end{subfigure} | ||||
| \qquad | ||||
| \begin{subfigure}{0.36\textwidth} | ||||
| \centering | ||||
| \includegraphics[width=\textwidth]{job_similarities_5024292-out/ks-0.7863--ks-2timeseries7827264} | ||||
| \caption{Concatenated time series} | ||||
| \end{subfigure} | ||||
| 
 | ||||
| \caption{Job-M with KS, for Rank\,3, SIM=78\%} | ||||
| \label{fig:job-M-ks} | ||||
| \end{figure} | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| \begin{figure}[bt] | ||||
| @ -818,37 +841,43 @@ While jobs exhibit short bursts of other active metrics even for low similarity | ||||
| \label{fig:job-M-hex-native} | ||||
| \end{figure} | ||||
| 
 | ||||
| 
 | ||||
| \begin{figure}[bt] | ||||
| \begin{subfigure}{0.3\textwidth} | ||||
| \centering | ||||
| \includegraphics[width=\textwidth]{job_similarities_5024292-out/hex_phases-0.8831--1timeseries7826634} | ||||
| \caption{Rank 2, SIM=88\%} | ||||
| \end{subfigure} | ||||
| \begin{subfigure}{0.3\textwidth} | ||||
| \centering | ||||
| \includegraphics[width=\textwidth]{job_similarities_5024292-out/hex_phases-0.7963--2timeseries5240733} | ||||
| \caption{Rank 3, SIM=80\%} | ||||
| \end{subfigure} | ||||
| \begin{subfigure}{0.3\textwidth} | ||||
| \includegraphics[width=\textwidth]{job_similarities_5024292-out/hex_phases-0.4583--14timeseries4244400} | ||||
| \caption{Rank 15, SIM=46\%} | ||||
| \end{subfigure} | ||||
| \begin{subfigure}{0.3\textwidth} | ||||
| \centering | ||||
| \includegraphics[width=\textwidth]{job_similarities_5024292-out/hex_phases-0.2397--99timeseries7644009} | ||||
| \caption{Rank 100, SIM=24\%} | ||||
| \end{subfigure} | ||||
| 
 | ||||
| \caption{Job-M with HEX\_phases, selection of similar jobs} | ||||
| \label{fig:job-M-hex-phases} | ||||
| \end{figure} | ||||
| % | ||||
| % \begin{figure}[bt] | ||||
| % \begin{subfigure}{0.3\textwidth} | ||||
| % \centering | ||||
| % \includegraphics[width=\textwidth]{job_similarities_5024292-out/hex_phases-0.8831--1timeseries7826634} | ||||
| % \caption{Rank 2, SIM=88\%} | ||||
| % \end{subfigure} | ||||
| % \begin{subfigure}{0.3\textwidth} | ||||
| % \centering | ||||
| % \includegraphics[width=\textwidth]{job_similarities_5024292-out/hex_phases-0.7963--2timeseries5240733} | ||||
| % \caption{Rank 3, SIM=80\%} | ||||
| % \end{subfigure} | ||||
| % \begin{subfigure}{0.3\textwidth} | ||||
| % \includegraphics[width=\textwidth]{job_similarities_5024292-out/hex_phases-0.4583--14timeseries4244400} | ||||
| % \caption{Rank 15, SIM=46\%} | ||||
| % \end{subfigure} | ||||
| % \begin{subfigure}{0.3\textwidth} | ||||
| % \centering | ||||
| % \includegraphics[width=\textwidth]{job_similarities_5024292-out/hex_phases-0.2397--99timeseries7644009} | ||||
| % \caption{Rank 100, SIM=24\%} | ||||
| % \end{subfigure} | ||||
| % | ||||
| % \caption{Job-M with HEX\_phases, selection of similar jobs} | ||||
| % \label{fig:job-M-hex-phases} | ||||
| % \end{figure} | ||||
| 
 | ||||
| \subsection{Job-L} | ||||
| 
 | ||||
| For the bin algorithms, the inspection of job names (14 unique names) leads to two prominent applications: bash and xmessy with 45 and 48 instances, respectively. | ||||
| The hex algorithms identify a more diverse set of applications (18 unique names and no xmessy job), and the HEX\_phases algorithm has 85 unique names. | ||||
| The KS algorithm finds 71 jobs ending with t127, which is a typical model configuration. | ||||
| The bin algorithms find a low similarity (best 2nd ranked job is 17\% similar), the inspection of job names (14 unique names) leads to two prominent applications: bash and xmessy with 45 and 48 instances, respectively. | ||||
| In \Cref{fig:job-L-bin-aggzero}, it can be seen that the found jobs have little in common with the reference job. | ||||
| 
 | ||||
| The HEX\_lev and HEX\_native algorithms identify a more diverse set of applications (18 unique names and no xmessy job). | ||||
| HEX\_native \Cref{fig:job-L-hex-native} finds long jobs where the only few activity as our reference job. | ||||
| The HEX\_phases algorithm finds 85 unique names but as there is only one short IO phase in the reference job, it finds many (short) jobs with 100\% similarity as seen in \Cref{fig:job-L-hex-phases}. | ||||
| The KS algorithm is even more inclusive having 1285 jobs with 100\% similarity; the 100 selected ones contain 71 jobs ending with t127, which is a typical model configuration. | ||||
| As expected, the histograms mimics the profile of the reference job, and thus, the algorithm does what it is expected to do. | ||||
| 
 | ||||
| 
 | ||||
| \begin{figure}[bt] | ||||
| \begin{subfigure}{0.3\textwidth} | ||||
| @ -856,11 +885,11 @@ The KS algorithm finds 71 jobs ending with t127, which is a typical model config | ||||
| \includegraphics[width=\textwidth]{job_similarities_7488914-out/bin_aggzeros-0.1671--1timeseries7869050} | ||||
| \caption{Rank 2, SIM=17\%} | ||||
| \end{subfigure} | ||||
| \begin{subfigure}{0.3\textwidth} | ||||
| \centering | ||||
| \includegraphics[width=\textwidth]{job_similarities_7488914-out/bin_aggzeros-0.1671--2timeseries7990497} | ||||
| \caption{Rank 3, SIM=17\%} | ||||
| \end{subfigure} | ||||
| % \begin{subfigure}{0.3\textwidth} | ||||
| % \centering | ||||
| % \includegraphics[width=\textwidth]{job_similarities_7488914-out/bin_aggzeros-0.1671--2timeseries7990497} | ||||
| % \caption{Rank 3, SIM=17\%} | ||||
| % \end{subfigure} | ||||
| \begin{subfigure}{0.3\textwidth} | ||||
| \includegraphics[width=\textwidth]{job_similarities_7488914-out/bin_aggzeros-0.1521--14timeseries8363584} | ||||
| \caption{Rank 15, SIM=15\%} | ||||
| @ -875,31 +904,31 @@ The KS algorithm finds 71 jobs ending with t127, which is a typical model config | ||||
| \label{fig:job-L-bin-aggzero} | ||||
| \end{figure} | ||||
| 
 | ||||
| 
 | ||||
| \begin{figure}[bt] | ||||
| \begin{subfigure}{0.3\textwidth} | ||||
| \centering | ||||
| \includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_lev-0.9386--1timeseries7266845} | ||||
| \caption{Rank 2, SIM=94\%} | ||||
| \end{subfigure} | ||||
| \begin{subfigure}{0.3\textwidth} | ||||
| \centering | ||||
| \includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_lev-0.9375--2timeseries7214657} | ||||
| \caption{Rank 3, SIM=94\%} | ||||
| \end{subfigure} | ||||
| \begin{subfigure}{0.3\textwidth} | ||||
| \includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_lev-0.7251--14timeseries4341304} | ||||
| \caption{Rank 15, SIM=73\%} | ||||
| \end{subfigure} | ||||
| \begin{subfigure}{0.3\textwidth} | ||||
| \centering | ||||
| \includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_lev-0.1657--99timeseries8036223} | ||||
| \caption{Rank 100, SIM=17\%} | ||||
| \end{subfigure} | ||||
| 
 | ||||
| \caption{Job-L with HEX\_lev, selection of similar jobs} | ||||
| \label{fig:job-L-hex-lev} | ||||
| \end{figure} | ||||
| % | ||||
| % \begin{figure}[bt] | ||||
| % \begin{subfigure}{0.3\textwidth} | ||||
| % \centering | ||||
| % \includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_lev-0.9386--1timeseries7266845} | ||||
| % \caption{Rank 2, SIM=94\%} | ||||
| % \end{subfigure} | ||||
| % \begin{subfigure}{0.3\textwidth} | ||||
| % \centering | ||||
| % \includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_lev-0.9375--2timeseries7214657} | ||||
| % \caption{Rank 3, SIM=94\%} | ||||
| % \end{subfigure} | ||||
| % \begin{subfigure}{0.3\textwidth} | ||||
| % \includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_lev-0.7251--14timeseries4341304} | ||||
| % \caption{Rank 15, SIM=73\%} | ||||
| % \end{subfigure} | ||||
| % % \begin{subfigure}{0.3\textwidth} | ||||
| % % \centering | ||||
| % % \includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_lev-0.1657--99timeseries8036223} | ||||
| % % \caption{Rank 100, SIM=17\%} | ||||
| % % \end{subfigure} | ||||
| % | ||||
| % \caption{Job-L with HEX\_lev, selection of similar jobs} | ||||
| % \label{fig:job-L-hex-lev} | ||||
| % \end{figure} | ||||
| 
 | ||||
| 
 | ||||
| \begin{figure}[bt] | ||||
| @ -917,11 +946,11 @@ The KS algorithm finds 71 jobs ending with t127, which is a typical model config | ||||
| \includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_native-0.8708--14timeseries4936553} | ||||
| \caption{Rank 15, SIM=87\%} | ||||
| \end{subfigure} | ||||
| \begin{subfigure}{0.3\textwidth} | ||||
| \centering | ||||
| \includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_native-0.1695--99timeseries7942052} | ||||
| \caption{Rank 100, SIM=17\%} | ||||
| \end{subfigure} | ||||
| % \begin{subfigure}{0.3\textwidth} | ||||
| % \centering | ||||
| % \includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_native-0.1695--99timeseries7942052} | ||||
| % \caption{Rank 100, SIM=17\%} | ||||
| % \end{subfigure} | ||||
| 
 | ||||
| \caption{Job-L with HEX\_native, selection of similar jobs} | ||||
| \label{fig:job-L-hex-native} | ||||
| @ -938,10 +967,10 @@ The KS algorithm finds 71 jobs ending with t127, which is a typical model config | ||||
| \includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_phases-1.0000--1timeseries4405671} | ||||
| \caption{Rank 3, SIM=100\%} | ||||
| \end{subfigure} | ||||
| \begin{subfigure}{0.3\textwidth} | ||||
| \includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_phases-1.0000--2timeseries4621422} | ||||
| \caption{Rank 15, SIM=100\%} | ||||
| \end{subfigure} | ||||
| % \begin{subfigure}{0.3\textwidth} | ||||
| % \includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_phases-1.0000--2timeseries4621422} | ||||
| % \caption{Rank 15, SIM=100\%} | ||||
| % \end{subfigure} | ||||
| \begin{subfigure}{0.3\textwidth} | ||||
| \centering | ||||
| \includegraphics[width=\textwidth]{job_similarities_7488914-out/hex_phases-1.0000--99timeseries4232293} | ||||
|  | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user