New diagrams.
This commit is contained in:
		
							parent
							
								
									a7fab7d233
								
							
						
					
					
						commit
						2c6d542a79
					
				| @ -1,7 +1,7 @@ | ||||
| #!/bin/bash | ||||
| for I in job_similarities_*.csv ; do | ||||
|   ./plot.R $I | ||||
|   ./plot.R $I > description.txt | ||||
|   mkdir $I.out | ||||
|   rm $I.out/* | ||||
|   mv *.png *.pdf $I.out | ||||
|   mv *.png *.pdf description.txt $I.out | ||||
| done | ||||
|  | ||||
							
								
								
									
										83
									
								
								plot.R
									
									
									
									
									
								
							
							
						
						
									
										83
									
								
								plot.R
									
									
									
									
									
								
							| @ -3,12 +3,16 @@ | ||||
| library(ggplot2) | ||||
| library(dplyr) | ||||
| require(scales) | ||||
| 
 | ||||
| args = commandArgs(trailingOnly = TRUE) | ||||
| #library(hrbrthemes) | ||||
| 
 | ||||
| file = "job_similarities_5024292.csv" | ||||
| file = "job_similarities_7488914.csv" | ||||
| 
 | ||||
| # Color scheme | ||||
| plotcolors <- c("#CC0000", "#FFA500", "#FFFF00", "#008000", "#9999ff", "#000066") | ||||
| 
 | ||||
| # Parse job from command line | ||||
| args = commandArgs(trailingOnly = TRUE) | ||||
| file = args[1] | ||||
| 
 | ||||
| data = read.csv(file) | ||||
| @ -33,8 +37,77 @@ ggsave("ecdf-0.5.png") | ||||
| ggplot(data, aes(similarity), group=alg_name) + geom_histogram(color="black", binwidth=0.025) + aes(fill = alg_name) + facet_grid(alg_name ~ ., switch = 'y') + scale_y_continuous(limits=c(0, 100), oob=squish)  +   scale_color_brewer(palette = "Set2") + ylab("Count (cropped at 100)") | ||||
| ggsave("hist-sim.png") | ||||
| 
 | ||||
| # load job information, i.e., the time series per job | ||||
| jobData = read.csv("job-io-datasets/datasets/job_codings.csv") | ||||
| metadata = read.csv("job-io-datasets/datasets/job_metadata.csv") | ||||
| metadata$user_id = as.factor(metadata$user_id) | ||||
| metadata$group_id = as.factor(metadata$group_id) | ||||
| 
 | ||||
| plotJobs = function(jobs){ | ||||
|     # plot details about the jobs of a given algorithm | ||||
|     tbl = jobData[jobData$jobid %in% jobs,] | ||||
|     print(summary(tbl)) | ||||
|     #print(tbl) | ||||
|     md = metadata[metadata$jobid %in% jobs,] | ||||
|     print(summary(md)) | ||||
|   } | ||||
| 
 | ||||
| # Store the job ids in a table, each column is one algorithm | ||||
| dim = length(levels(data$alg_name)) | ||||
| count = 100 | ||||
| result = matrix(1:(dim*count), nrow=count, ncol=dim) | ||||
| colnames(result) = levels(data$alg_name) | ||||
| 
 | ||||
| # Extract the 100 most similar jobs into the table | ||||
| for (level in levels(data$alg_name)){ | ||||
|     e = data %>% filter(alg_name == level) | ||||
|     print(level) | ||||
|     print(summary(e)) | ||||
|     ordered = order(e$similarity, decreasing=TRUE)[1:count] | ||||
|     print(e[ordered,]) | ||||
|     # Extract the data for the jobs | ||||
|     jobs = e[ordered,"jobid"] | ||||
|     result[, level] = jobs | ||||
|     plotJobs(jobs) | ||||
| } | ||||
| 
 | ||||
| # Compute intersection in a new table | ||||
| res.intersect = matrix(1:(dim*dim), nrow=dim, ncol=dim) | ||||
| colnames(res.intersect) = levels(data$alg_name) | ||||
| rownames(res.intersect) = levels(data$alg_name) | ||||
| 
 | ||||
| tbl.intersect = expand.grid(first=levels(data$alg_name), second=levels(data$alg_name)) | ||||
| tbl.intersect$intersect = 0 | ||||
| 
 | ||||
| for (l1 in levels(data$alg_name)){ | ||||
|   for (l2 in levels(data$alg_name)){ | ||||
|     res = length(intersect(result[,l1], result[,l2])) | ||||
|     res.intersect[l1,l2] = res | ||||
|     tbl.intersect[tbl.intersect$first == l1 & tbl.intersect$second == l2, ]$intersect = res | ||||
|   } | ||||
| } | ||||
| 
 | ||||
| print(res.intersect) | ||||
| 
 | ||||
| # Plot heatmap about intersection | ||||
| ggplot(tbl.intersect, aes(first, second, fill=intersect)) + geom_tile() + geom_text(aes(label = round(intersect, 1))) + scale_fill_gradientn(colours = rev(plotcolors)) | ||||
| ggsave("intersection-heatmap.png") | ||||
| 
 | ||||
| # Collect the metadata of all jobs in a new table | ||||
| res.jobs = tibble() | ||||
| for (alg_name in levels(data$alg_name)){ | ||||
|   res.jobs = rbind(res.jobs, cbind(alg_name, metadata[metadata$jobid %in% result[, alg_name],])) | ||||
| } | ||||
| 
 | ||||
| ggplot(res.jobs, aes(alg_name, total_nodes, fill=alg_name)) + geom_boxplot() + scale_y_continuous(trans = log2_trans(), breaks = trans_breaks("log2", function(x) 2^x), labels = trans_format("log2", math_format(2^.x))) | ||||
| ggsave("jobs-nodes.png") | ||||
| 
 | ||||
| ggplot(res.jobs, aes(alg_name, elapsed, fill=alg_name)) + geom_boxplot() + scale_y_continuous(trans = log2_trans(), breaks = trans_breaks("log10", function(x) 10^x), labels = trans_format("log10", math_format(10^.x))) + ylab("Runtime in s") + xlab("Algorithm") | ||||
| ggsave("jobs-elapsed.png") | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| # scale_y_continuous(trans = log2_trans(), breaks = trans_breaks("log2", function(x) 2^x), labels = trans_format("log2", math_format(2^.x))) | ||||
| 
 | ||||
| # stat_summary(aes(linetype = alg_id), fun.y=mean, geom="line")  | ||||
| 
 | ||||
| exit(0) | ||||
| # stat_summary(aes(linetype = alg_id), fun.y=mean, geom="line") | ||||
|  | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user