Merge branch 'master' of http://git.hps.vi4io.org/eugen.betke/mistral-io-datasets
This commit is contained in:
commit
75fe1a9952
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -44,7 +44,8 @@
|
|||
|
||||
\usepackage{graphicx}
|
||||
\graphicspath{
|
||||
{./pictures/}
|
||||
{./pictures/},
|
||||
{../fig/}
|
||||
}
|
||||
|
||||
\usepackage[backend=bibtex, style=numeric]{biblatex}
|
||||
|
@ -127,30 +128,62 @@ Check time series algorithms:
|
|||
|
||||
\begin{itemize}
|
||||
\item bin
|
||||
\item hex\_native/hex\_lev
|
||||
\item pm\_quant
|
||||
\item hex\_native
|
||||
\item hex\_lev
|
||||
\item hex\_quant
|
||||
\end{itemize}
|
||||
|
||||
\section{Evaluation}
|
||||
\label{sec:evaluation}
|
||||
|
||||
Two study examples (two reference jobs):
|
||||
In the following, we assume a job is given and we aim to identify similar jobs.
|
||||
We chose several reference jobs with different compute and IO characteristics visualized in \Cref{fig:refJobs}:
|
||||
\begin{itemize}
|
||||
\item jobA: shorter length, e.g. 5-10, that has a little bit IO in at least two metadata metrics (more better).
|
||||
\item jobB: a very IO intensive longer job, e.g., length $>$ 20, with IO read or write and maybe one other metrics.
|
||||
\item Job-S: performs postprocessing on a single node. This is a typical process in climate science where data products are reformatted and annotated with metadata to a standard representation (so called CMORization). The post-processing is IO intensive.
|
||||
\item Job-M: a typical MPI parallel 8-hour compute job on 128 nodes which writes time series data after some spin up. %CHE.ws12
|
||||
\item Job-L: a 66-hour 20-node job.
|
||||
The initialization data is read at the beginning.
|
||||
Then only a single master node writes constantly a small volume of data; in fact, the generated data is too small to be categorized as IO relevant.
|
||||
\end{itemize}
|
||||
|
||||
For each reference job: create CSV file which contains all jobs with:
|
||||
\begin{itemize}
|
||||
\item JOB ID, for each algorithm: the coding and the computed ranking $\rightarrow$ thus one long row.
|
||||
\end{itemize}
|
||||
Alternatively, could be one CSV for each algorithm that contains JOB ID, coding + rank
|
||||
For each reference job and algorithm, we created a CSV files with the computed similarity for all other jobs.
|
||||
|
||||
|
||||
Sollte man was zur Laufzeit der Algorithmen sagen? Denke Daten zu haben wäre sinnvoll.
|
||||
|
||||
Create histograms + cumulative job distribution for all algorithms.
|
||||
Insert job profiles for closest 10 jobs.
|
||||
|
||||
Potentially, analyze how the rankings of different similarities look like.
|
||||
|
||||
|
||||
\begin{figure}
|
||||
\begin{subfigure}{0.8\textwidth}
|
||||
\includegraphics[width=\textwidth]{job-timeseries4296426}
|
||||
\caption{Job-S} \label{fig:job-S}
|
||||
\end{subfigure}
|
||||
|
||||
\caption{Reference jobs: timeline of mean IO activity}
|
||||
\label{fig:refJobs}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\begin{figure}\ContinuedFloat
|
||||
|
||||
\begin{subfigure}{0.8\textwidth}
|
||||
\includegraphics[width=\textwidth]{job-timeseries5024292}
|
||||
\caption{Job-M} \label{fig:job-M}
|
||||
\end{subfigure}
|
||||
|
||||
\begin{subfigure}{0.8\textwidth}
|
||||
\includegraphics[width=\textwidth]{job-timeseries7488914-30.pdf}
|
||||
\caption{Job-L (first 30 segments of 400; remaining segments are similar)}
|
||||
\label{fig:job-L}
|
||||
\end{subfigure}
|
||||
\caption{Reference jobs: timeline of mean IO activity; non-shown timelines are 0}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\section{Summary and Conclusion}
|
||||
\label{sec:summary}
|
||||
|
||||
|
|
|
@ -0,0 +1,14 @@
|
|||
#!/bin/bash
|
||||
|
||||
# This script calls all other scripts to re-create the figures for the paper
|
||||
|
||||
mkdir fig
|
||||
for job in 5024292 4296426 7488914 ; do
|
||||
./scripts/plot-single-job.py $job "fig/job-"
|
||||
done
|
||||
|
||||
# Remove whitespace around jobs
|
||||
# for file in fig/*.pdf ; do
|
||||
# pdfcrop $file output.pdf
|
||||
# mv output.pdf $file
|
||||
# done
|
|
@ -5,12 +5,47 @@ import sys
|
|||
from pandas import DataFrame
|
||||
from pandas import Grouper
|
||||
from matplotlib import pyplot
|
||||
import matplotlib.cm as cm
|
||||
|
||||
jobs = [sys.argv[1]]
|
||||
prefix = sys.argv[2]
|
||||
jobs = sys.argv[1].split(",")
|
||||
prefix = sys.argv[2].split(",")
|
||||
|
||||
print("Plotting the job: " + str(jobs))
|
||||
|
||||
# Color map
|
||||
colorMap = { "md_file_create": cm.tab10(0),
|
||||
"md_file_delete": cm.tab10(1),
|
||||
"md_mod": cm.tab10(2),
|
||||
"md_other": cm.tab10(3),
|
||||
"md_read": cm.tab10(4),
|
||||
"read_bytes": cm.tab10(5),
|
||||
"read_calls": cm.tab10(6),
|
||||
"write_bytes": cm.tab10(7),
|
||||
"write_calls": cm.tab10(8)
|
||||
}
|
||||
|
||||
markerMap = { "md_file_create": "^",
|
||||
"md_file_delete": "v",
|
||||
"md_other": ".",
|
||||
"md_mod": "<",
|
||||
"md_read": ">",
|
||||
"read_bytes": "h",
|
||||
"read_calls": "H",
|
||||
"write_bytes": "D",
|
||||
"write_calls": "d"
|
||||
}
|
||||
|
||||
linestyleMap = { "md_file_create": ":",
|
||||
"md_file_delete": ":",
|
||||
"md_mod": ":",
|
||||
"md_other": ":",
|
||||
"md_read": ":",
|
||||
"read_bytes": "--",
|
||||
"read_calls": "--",
|
||||
"write_bytes": "-.",
|
||||
"write_calls": "-."
|
||||
}
|
||||
|
||||
# Plot the timeseries
|
||||
def plot(prefix, header, row):
|
||||
x = { h : d for (h, d) in zip(header, row)}
|
||||
|
@ -36,27 +71,45 @@ def plot(prefix, header, row):
|
|||
groups = data.groupby(["metrics"])
|
||||
metrics = DataFrame()
|
||||
labels = []
|
||||
colors = []
|
||||
style = []
|
||||
for name, group in groups:
|
||||
metrics[name] = [x[2] for x in group.values]
|
||||
labels.append(name)
|
||||
style.append(linestyleMap[name] + markerMap[name])
|
||||
colors.append(colorMap[name])
|
||||
|
||||
ax = metrics.plot(subplots=True, legend=False, sharex=True, grid = True, sharey=True, colormap='jet', marker='.', markersize=10, figsize=(8, 2 + 2 * len(labels)))
|
||||
for (i, l) in zip(range(0, len(labels)), labels):
|
||||
ax[i].set_ylabel(l)
|
||||
fsize = (8, 1 + 1.5 * len(labels))
|
||||
fsizeFixed = (8, 2)
|
||||
|
||||
pyplot.close('all')
|
||||
|
||||
if len(labels) < 4 :
|
||||
ax = metrics.plot(legend=True, sharex=True, grid = True, sharey=True, markersize=10, figsize=fsizeFixed, color=colors, style=style)
|
||||
ax.set_ylabel("Value")
|
||||
else:
|
||||
ax = metrics.plot(subplots=True, legend=False, sharex=True, grid = True, sharey=True, markersize=10, figsize=fsize, color=colors, style=style)
|
||||
for (i, l) in zip(range(0, len(labels)), labels):
|
||||
ax[i].set_ylabel(l)
|
||||
|
||||
pyplot.xlabel("Segment number")
|
||||
pyplot.savefig(prefix + "timeseries" + jobid + ".png")
|
||||
pyplot.savefig(prefix + "timeseries" + jobid + ".pdf", bbox_inches='tight')
|
||||
|
||||
# Plot first 30 segments
|
||||
if len(timeseries) <= 50:
|
||||
return
|
||||
|
||||
ax = metrics.plot(subplots=True, legend=False, sharex=True, grid = True, sharey=True, colormap='jet', marker='.', markersize=10, xlim=(0,30))
|
||||
for (i, l) in zip(range(0, len(labels)), labels):
|
||||
ax[i].set_ylabel(l)
|
||||
|
||||
if len(labels) < 4 :
|
||||
ax = metrics.plot(legend=True, xlim=(0,30), sharex=True, grid = True, sharey=True, markersize=10, figsize=fsizeFixed, color=colors, style=style)
|
||||
ax.set_ylabel("Value")
|
||||
else:
|
||||
ax = metrics.plot(subplots=True, xlim=(0,30), legend=False, sharex=True, grid = True, sharey=True, markersize=10, figsize=fsize, color=colors, style=style)
|
||||
for (i, l) in zip(range(0, len(labels)), labels):
|
||||
ax[i].set_ylabel(l)
|
||||
|
||||
pyplot.xlabel("Segment number")
|
||||
pyplot.savefig(prefix + "timeseries" + jobid + "-30.png")
|
||||
pyplot.savefig(prefix + "timeseries" + jobid + "-30.pdf", bbox_inches='tight')
|
||||
|
||||
### end plotting function
|
||||
|
||||
|
@ -65,6 +118,7 @@ def plot(prefix, header, row):
|
|||
with open('job-io-datasets/datasets/job_codings.csv') as csv_file:
|
||||
csv_reader = csv.reader(csv_file, delimiter=',')
|
||||
line_count = 0
|
||||
job = 0
|
||||
for row in csv_reader:
|
||||
if line_count == 0:
|
||||
header = row
|
||||
|
@ -74,4 +128,5 @@ with open('job-io-datasets/datasets/job_codings.csv') as csv_file:
|
|||
if not row[0].strip() in jobs:
|
||||
continue
|
||||
else:
|
||||
plot(prefix, header, row)
|
||||
plot(prefix[job], header, row)
|
||||
job += 1
|
||||
|
|
|
@ -19,10 +19,8 @@ data = read.csv(file)
|
|||
# Columns are: jobid alg_id alg_name similarity
|
||||
|
||||
data$alg_id = as.factor(data$alg_id)
|
||||
print(nrow(data))
|
||||
|
||||
# FILTER, TODO
|
||||
data = data %>% filter(similarity <= 1.0)
|
||||
cat("Job count:")
|
||||
cat(nrow(data))
|
||||
|
||||
# empirical cummulative density function (ECDF)
|
||||
ggplot(data, aes(similarity, color=alg_name, group=alg_name)) + stat_ecdf(geom = "step") + xlab("SIM") + ylab("Fraction of jobs") + theme(legend.position="bottom") + scale_color_brewer(palette = "Set2")
|
||||
|
@ -34,7 +32,7 @@ print(summary(e))
|
|||
ggsave("ecdf-0.5.png")
|
||||
|
||||
# histogram for the jobs
|
||||
ggplot(data, aes(similarity), group=alg_name) + geom_histogram(color="black", binwidth=0.025) + aes(fill = alg_name) + facet_grid(alg_name ~ ., switch = 'y') + scale_y_continuous(limits=c(0, 100), oob=squish) + scale_color_brewer(palette = "Set2") + ylab("Count (cropped at 100)")
|
||||
ggplot(data, aes(similarity), group=alg_name) + geom_histogram(color="black", binwidth=0.025) + aes(fill = alg_name) + facet_grid(alg_name ~ ., switch = 'y') + scale_y_continuous(limits=c(0, 100), oob=squish) + scale_color_brewer(palette = "Set2") + ylab("Count (cropped at 100)") + theme(legend.position = "none")
|
||||
ggsave("hist-sim.png")
|
||||
|
||||
# load job information, i.e., the time series per job
|
||||
|
@ -51,13 +49,10 @@ plotJobs = function(jobs){
|
|||
md = metadata[metadata$jobid %in% jobs,]
|
||||
print(summary(md))
|
||||
|
||||
# print the job timeline
|
||||
# print the job timelines
|
||||
r = e[ordered, ]
|
||||
for (row in 1:length(jobs)) {
|
||||
prefix = sprintf("%s-%f-%.0f-", level, r[row, "similarity"], row)
|
||||
job = r[row, "jobid"]
|
||||
system(sprintf("scripts/plot-single-job.py %s %s", job, prefix))
|
||||
}
|
||||
prefix = do.call("sprintf", list("%s-%.0f-", level, r$similarity))
|
||||
system(sprintf("scripts/plot-single-job.py %s %s", paste(r$jobid, collapse=","), paste(prefix, collapse=",")))
|
||||
}
|
||||
|
||||
# Store the job ids in a table, each column is one algorithm
|
||||
|
|
Loading…
Reference in New Issue