Paper moved
This commit is contained in:
		
							parent
							
								
									18a084f025
								
							
						
					
					
						commit
						9a79854aa1
					
				
							
								
								
									
										1
									
								
								paper/bibliography.bib
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1
									
								
								paper/bibliography.bib
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1 @@ | |||||||
|  | 
 | ||||||
							
								
								
									
										1208
									
								
								paper/llncs.cls
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1208
									
								
								paper/llncs.cls
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										11
									
								
								paper/main-blx.bib
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										11
									
								
								paper/main-blx.bib
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,11 @@ | |||||||
|  | @Comment{$ biblatex control file $} | ||||||
|  | @Comment{$ biblatex bcf format version 3.7 $} | ||||||
|  | % Do not modify this file! | ||||||
|  | % | ||||||
|  | % This is an auxiliary file used by the 'biblatex' package. | ||||||
|  | % This file may safely be deleted. It will be recreated as | ||||||
|  | % required. | ||||||
|  | 
 | ||||||
|  | @Control{biblatex-control, | ||||||
|  |   options = {3.7:0:0:1:0:1:1:0:0:0:0:1:3:1:3:1:0:0:3:1:79:+:+:nty}, | ||||||
|  | } | ||||||
							
								
								
									
										158
									
								
								paper/main.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										158
									
								
								paper/main.tex
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,158 @@ | |||||||
|  | \let\accentvec\vec | ||||||
|  | \documentclass[]{llncs} | ||||||
|  | 
 | ||||||
|  | \usepackage{todonotes} | ||||||
|  | \newcommand{\eb}[1]{\todo[inline]{(EB): #1}} | ||||||
|  | \newcommand{\jk}[1]{\todo[inline]{JK: #1}} | ||||||
|  | 
 | ||||||
|  | \usepackage{silence} | ||||||
|  | \WarningFilter{biblatex}{Using} | ||||||
|  | \WarningFilter{latex}{Float too large} | ||||||
|  | \WarningFilter{caption}{Unsupported} | ||||||
|  | \WarningFilter{caption}{Unknown document} | ||||||
|  | 
 | ||||||
|  | \let\spvec\vec | ||||||
|  | \let\vec\accentvec | ||||||
|  | \usepackage{amsmath} | ||||||
|  | \let\vec\spvec | ||||||
|  | 
 | ||||||
|  | \usepackage{array} | ||||||
|  | \usepackage{xcolor} | ||||||
|  | \usepackage{color} | ||||||
|  | \usepackage{colortbl} | ||||||
|  | \usepackage{subcaption} | ||||||
|  | \usepackage{hyperref} | ||||||
|  | \usepackage{listings} | ||||||
|  | \usepackage{lstautogobble} | ||||||
|  | \usepackage[listings,skins,breakable,raster,most]{tcolorbox} | ||||||
|  | \usepackage{caption} | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | \lstset{ | ||||||
|  | 	numberbychapter=false, | ||||||
|  | 	belowskip=-10pt, | ||||||
|  | 	aboveskip=-10pt, | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | \lstdefinestyle{lstcodebox} { | ||||||
|  | 	basicstyle=\scriptsize\ttfamily, | ||||||
|  | 	autogobble=true, | ||||||
|  | 	tabsize=2, | ||||||
|  | 	captionpos=b, | ||||||
|  | 	float, | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | \usepackage{graphicx} | ||||||
|  | \graphicspath{ | ||||||
|  | 	{./pictures/} | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | \usepackage[backend=bibtex, style=numeric]{biblatex} | ||||||
|  | \addbibresource{bibliography.bib} | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | \usepackage{enumitem} | ||||||
|  | \setitemize{noitemsep,topsep=0pt,parsep=0pt,partopsep=0pt} | ||||||
|  | 
 | ||||||
|  | \definecolor{darkgreen}{rgb}{0,0.5,0} | ||||||
|  | \definecolor{darkyellow}{rgb}{0.7,0.7,0} | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | \usepackage{cleveref} | ||||||
|  | \crefname{codecount}{Code}{Codes} | ||||||
|  | 
 | ||||||
|  | \title{Using Machine Learning to Identify Similar Jobs Based on their IO Behavior} | ||||||
|  | \author{Julian Kunkel\inst{2} \and Eugen Betke\inst{1}} | ||||||
|  | 
 | ||||||
|  | \institute{ | ||||||
|  | University of Reading--% | ||||||
|  | \email{j.m.kunkel@reading.ac.uk}% | ||||||
|  | \and | ||||||
|  | DKRZ -- | ||||||
|  | \email{betke@dkrz.de}% | ||||||
|  | } | ||||||
|  | \begin{document} | ||||||
|  | \maketitle | ||||||
|  | 
 | ||||||
|  | \begin{abstract} | ||||||
|  | 
 | ||||||
|  | Support staff. | ||||||
|  | Problem, a particular job found that isn't performing well. | ||||||
|  | Now how can we find similar jobs? | ||||||
|  | 
 | ||||||
|  | Problem with definition of similarity. | ||||||
|  | 
 | ||||||
|  | In this paper, a methodology and algorithms to identify similar jobs based on profiles and time series are  illustrated. | ||||||
|  | Similar to a study. | ||||||
|  | 
 | ||||||
|  | Research questions: is this effective to find similar jobs? | ||||||
|  | 
 | ||||||
|  | The contribution of this paper... | ||||||
|  | \end{abstract} | ||||||
|  | 
 | ||||||
|  | \section{Introduction} | ||||||
|  | 
 | ||||||
|  | %This paper is structured as follows. | ||||||
|  | %We start with the related work in \Cref{sec:relwork}. | ||||||
|  | %Then, in TODO we introduce the DKRZ monitoring systems and explain how I/O metrics are captured by the collectors. | ||||||
|  | %In \Cref{sec:methodology} we describe the data reduction and the machine learning approaches and do an experiment in \Cref{sec:data,sec:evaluation}. | ||||||
|  | %Finally, we finalize our paper with a summary in \Cref{sec:summary}. | ||||||
|  | 
 | ||||||
|  | \section{Related Work} | ||||||
|  | \label{sec:relwork} | ||||||
|  | 
 | ||||||
|  | \section{Methodology} | ||||||
|  | \label{sec:methodology} | ||||||
|  | 
 | ||||||
|  | Given: the reference job ID. | ||||||
|  | Create from 4D time series data (number of nodes, per file systems, 9 metrics, time) a feature set. | ||||||
|  | 
 | ||||||
|  | Adapt the algorithms: | ||||||
|  | \begin{itemize} | ||||||
|  | 	\item iterate for all jobs | ||||||
|  | 		\begin{itemize} | ||||||
|  | 			\item compute distance to reference job | ||||||
|  | 		\end{itemize} | ||||||
|  | 	\item sort the jobs based on the distance to ref job | ||||||
|  | 	\item create cumulative job distribution based on distance for visualization, allow users to output jobs with a given distance | ||||||
|  | \end{itemize} | ||||||
|  | 
 | ||||||
|  | A user might be interested to explore say closest 10 or 50 jobs. | ||||||
|  | 
 | ||||||
|  | Algorithms: | ||||||
|  | Profile algorithm: job-profiles (job-duration, job-metrics, combine both) | ||||||
|  | $\rightarrow$ just compute geom-mean distance between profile | ||||||
|  | 
 | ||||||
|  | Check time series algorithms: | ||||||
|  | 
 | ||||||
|  | \begin{itemize} | ||||||
|  | 	\item bin | ||||||
|  | 	\item hex\_native/hex\_lev | ||||||
|  | 	\item pm\_quant | ||||||
|  | \end{itemize} | ||||||
|  | 
 | ||||||
|  | \section{Evaluation} | ||||||
|  | \label{sec:evaluation} | ||||||
|  | 
 | ||||||
|  | Two study examples (two reference jobs): | ||||||
|  | \begin{itemize} | ||||||
|  | 	\item jobA: shorter length, e.g. 5-10, that has a little bit IO in at least two metadata metrics (more better). | ||||||
|  | 	\item jobB: a very IO intensive longer job, e.g., length $>$ 20, with IO read or write and maybe one other metrics. | ||||||
|  | \end{itemize} | ||||||
|  | 
 | ||||||
|  | For each reference job: create CSV file which contains all jobs with: | ||||||
|  | \begin{itemize} | ||||||
|  | 	\item JOB ID, for each algorithm: the coding and the computed ranking $\rightarrow$ thus one long row. | ||||||
|  | \end{itemize} | ||||||
|  | Alternatively, could be one CSV for each algorithm that contains JOB ID, coding + rank | ||||||
|  | 
 | ||||||
|  | Create histograms + cumulative job distribution for all algorithms. | ||||||
|  | Insert job profiles for closest 10 jobs. | ||||||
|  | 
 | ||||||
|  | Potentially, analyze how the rankings of different similarities look like. | ||||||
|  | 
 | ||||||
|  | \section{Summary and Conclusion} | ||||||
|  | \label{sec:summary} | ||||||
|  | 
 | ||||||
|  | %\printbibliography | ||||||
|  | \end{document} | ||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user