Visualization script and new structure
This commit is contained in:
		
							parent
							
								
									9ce020ae5e
								
							
						
					
					
						commit
						a7fab7d233
					
				
							
								
								
									
										8
									
								
								datasets/decompress.sh
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										8
									
								
								datasets/decompress.sh
									
									
									
									
									
										Executable file
									
								
							| @ -0,0 +1,8 @@ | ||||
| #!/bin/bash | ||||
| 
 | ||||
| filenames=$( ls *.tar.xz ) | ||||
| 
 | ||||
| for filename in ${filenames[@]}; do | ||||
| 	echo "Decompressing ${filename}" | ||||
|     tar -xJf "${filename}"  | ||||
| done | ||||
							
								
								
									
										11
									
								
								scripts/r_visual_jobs#pickle_reader.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										11
									
								
								scripts/r_visual_jobs#pickle_reader.py
									
									
									
									
									
										Executable file
									
								
							| @ -0,0 +1,11 @@ | ||||
| # Required for job visualization | ||||
| # job_visualization_r.ipynb | ||||
| 
 | ||||
| import pandas as pd | ||||
| 
 | ||||
| def read_pickle_file(file): | ||||
|     pickle_data = pd.read_pickle(file) | ||||
|     start, stop, data, metadata = pickle_data | ||||
|     return data.reset_index() | ||||
| 
 | ||||
| 
 | ||||
							
								
								
									
										208
									
								
								scripts/visualize.R
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										208
									
								
								scripts/visualize.R
									
									
									
									
									
										Executable file
									
								
							| @ -0,0 +1,208 @@ | ||||
| #!/usr/bin/env Rscript | ||||
| 
 | ||||
| library('ggplot2') | ||||
| library('ggthemes') | ||||
| library('tidyverse') | ||||
| library('repr') | ||||
| library('jcolors') | ||||
| library("reticulate") | ||||
| 
 | ||||
| #setwd(source_dir) | ||||
| use_python("/mnt/lustre01/work/ku0598/k202107/software/install/python/3.8.0/bin/python3", required=T) | ||||
| source_python("/work/ku0598/k202107/git/mistral-job-evaluation/scripts/jupyter/r_visual_jobs#pickle_reader.py") | ||||
| 
 | ||||
| global = list() | ||||
| global[['source_dir']] = '/work/ku0598/k202107/git/mistral-job-evaluation/data/eval_20200117' | ||||
| global[['eval_dir']] = '../evaluation' | ||||
| global[['fig_dir']] = sprintf('%s/pictures/jobs', global[['eval_dir']]) | ||||
| global[['key']] = 22897682 | ||||
| 
 | ||||
| config = list() | ||||
| config[['crypted_jobid']] = 4296426 # has 16 levels | ||||
| config[['jobid']] = bitwXor(config[['crypted_jobid']], global[['key']]) | ||||
| config[['cat_fn']] =  sprintf("%s/600/cats/%s.json", global[['source_dir']], config[['jobid']]) | ||||
| config[['raw_fn']] = sprintf('%s/600/jobdata/%s.pkl', global[['source_dir']], config[['jobid']]) | ||||
| 
 | ||||
| 
 | ||||
| graph_config = list() | ||||
| # Colorized entities | ||||
| # "name" : file systems | ||||
| # "host" : compute nodes | ||||
| # "metric" : I/O metrics | ||||
| graph_config[['cols']] = c('metric', 'host', 'name') | ||||
| #graph_config[['cols']] = c('host', 'name') | ||||
| 
 | ||||
| # Enable views | ||||
| #'default', 'jscore', 'nscore', 'mscore' | ||||
| graph_config[['views']] = c('jscore', 'default', 'nscore', 'mscore') | ||||
| #graph_config[['views']] = c('default') | ||||
| 
 | ||||
| # Set at nth position a label | ||||
| graph_config[['x_breakpoint_interval']] = 5 | ||||
| 
 | ||||
| # Segments size in minutes | ||||
| graph_config[['seg_size']] = 10 | ||||
| 
 | ||||
| 
 | ||||
| rename_metrics <- function(data) { | ||||
|     data['metric'] <- lapply(data['metric'], gsub, pattern = "host.lustre.", replacement = "", fixed = TRUE) | ||||
|     data['metric'] <- lapply(data['metric'], gsub, pattern = "stats.", replacement = "", fixed = TRUE) | ||||
|     data['metric'] <- lapply(data['metric'], gsub, pattern = ".bytes", replacement = "_bytes", fixed = TRUE) | ||||
|     data['metric'] <- lapply(data['metric'], gsub, pattern = ".calls", replacement = "_calls", fixed = TRUE) | ||||
|     return(data) | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| visualize_categories <- function(gconf, cconf, data, view, col, x_breakpoints) { | ||||
|     out_dir = sprintf('%s/%d', gconf[['fig_dir']], cconf[['jobid']]) | ||||
|     dir.create(out_dir, recursive=TRUE) | ||||
|     | ||||
|     # Set legend title | ||||
|     if (col == 'host') { | ||||
|         gtitle = 'Node' | ||||
|     } | ||||
|     else if (col == 'metric') { | ||||
|         gtitle = 'Metric' | ||||
|     } | ||||
|     else if (col == 'name') { | ||||
|         gtitle = 'File system' | ||||
|     } | ||||
|      | ||||
|     | ||||
|     # The palette with black: | ||||
|     #cbp2 = c("#000000", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7", "#999999") | ||||
|     # General plot | ||||
|     p <- ( | ||||
|         ggplot(data, aes_string(x='bin', y='score', fill=col)) | ||||
|         #+ geom_bar(stat='summary', fun.y = "mean")  | ||||
|         + geom_bar(stat='identity')  | ||||
|         + scale_x_discrete(breaks=x_breakpoints) | ||||
|         #+ scale_fill_manual(values= cbp2) | ||||
|         #+ geom_line(data=dat,aes(x='rmin', y='value', color="Second line")) | ||||
|         + guides( | ||||
|             fill = guide_legend(title=gtitle, nrow=15) | ||||
|         ) | ||||
|         + ylab('JScore') | ||||
|         + xlab('Runtime in minutes') | ||||
|         + theme_linedraw() | ||||
|         #+ theme_classic() | ||||
|         + theme( | ||||
|             #guide_legend.title = element_text('File system'), #element_blank(), | ||||
|             #legend.text=element_text(size=6), | ||||
|             legend.spacing.y = unit(0, 'cm'), | ||||
|             #legend.spacing.x = unit(0, 'cm'), | ||||
|             legend.text = element_text(size=8, margin = margin(t = 1)), | ||||
|             strip.text.x = element_text(size = 8, color = "black"), | ||||
|             strip.text.y = element_text(size = 8, color = "black"), | ||||
|             legend.key = element_rect(size = 1), | ||||
|             legend.key.size = unit(0.5, 'lines'), | ||||
|             strip.background = element_rect(color="black", fill="#FFFFFF", linetype="solid") | ||||
| #             panel.grid.major=element_line(size=0.25, color=alpha('black', 0.25)), | ||||
| #             panel.grid.minor=element_line(size=0.25, color=alpha('black', 0.25)) | ||||
|             ) | ||||
|     ) | ||||
|     if (col == 'host') { | ||||
|         if (nrow(unique(data['host'])) > 13) { | ||||
|             p <- (p + | ||||
|                 theme( | ||||
|                 #legend.position='none' | ||||
|                 ) | ||||
|             ) | ||||
|         } | ||||
|     } | ||||
|     else if (col == 'metric') { | ||||
|         p <- (p  | ||||
|             + scale_fill_jcolors("pal12") | ||||
|         ) | ||||
|     } | ||||
|     else if (col == 'name') { | ||||
|     } | ||||
|      | ||||
|     if (view == 'jscore') { | ||||
|         fn = sprintf('%s/jscore_%s.png', out_dir, col) | ||||
|         ggsave(fn, width=10, height=2.5) | ||||
|     } | ||||
|     if (view == 'default') { | ||||
|         p <- ( | ||||
|             p  | ||||
|             + facet_grid(metric ~ .) | ||||
|             + ylab('') | ||||
|             + ylab('Score') | ||||
|             + theme( | ||||
|                 legend.position='none', | ||||
|                 #strip.text.x = element_text(angle=0), | ||||
|                 strip.text.y = element_text(angle=0), | ||||
|             ) | ||||
|         ) | ||||
|         fn = sprintf('%s/default_%s.png', out_dir, col) | ||||
|         ggsave(fn, width=7, height=7) | ||||
|     } | ||||
|     else if (view == 'nscore') { | ||||
|         p <- ( | ||||
|             p  | ||||
|             + facet_grid(host ~ .) | ||||
|             + ylab('NScore') | ||||
|             + theme( | ||||
|                 #legend.position='none' | ||||
|             ) | ||||
|         ) | ||||
|         if (col == 'name') { | ||||
|             p <- p + theme(legend.position = 'bottom') | ||||
|         } | ||||
|         fn = sprintf('%s/nscore_%s.png', out_dir, col) | ||||
|         ggsave(fn, width=4, height=4) | ||||
|     } | ||||
|     else if (view == 'mscore') { | ||||
|         p <- ( | ||||
|             p  | ||||
|             + facet_grid(host ~ metric) | ||||
|             + ylab('MScore') | ||||
|             + theme( | ||||
|                 legend.position='none', | ||||
|                 axis.text.x = element_text(angle=90, hjust=1) | ||||
|             ) | ||||
|         ) | ||||
|         fn = sprintf('%s/mscore_%s.png', out_dir, col) | ||||
|         ggsave(fn, width=8, height=4) | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| # Create 10 minutes segments | ||||
| cat_data <- rename_metrics(read.csv(config[['cat_fn']])) # categorized data | ||||
| cat_data['rmin'] = cat_data['runtime'] / 60 # runtime in minutes | ||||
| duration = max(ceiling(cat_data['rmin'])) | ||||
| bins = seq(0, duration, graph_config[['seg_size']] ) | ||||
| 
 | ||||
| 
 | ||||
| d2 <- cat_data %>%  | ||||
|     group_by(cat) %>%  | ||||
|     mutate(bin = cut(rmin, breaks = bins, labels = bins[-1]))  | ||||
| d3 <- d2 %>% | ||||
|     group_by(name, metric, host, bin) %>% | ||||
|     summarise(score = sum(cat)) | ||||
| 
 | ||||
| x_breakpoints <- bins[seq(1, length(bins), graph_config[['x_breakpoint_interval']])] | ||||
| 
 | ||||
| for (col in graph_config[['cols']]) { | ||||
|     for (view in graph_config[['views']]) { | ||||
|         visualize_categories (global, config, d3, view, col, x_breakpoints) | ||||
|     } | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| ## TODO | ||||
| #visualize_rawdata <- function(data) { | ||||
| #} | ||||
| 
 | ||||
| #pickle_data <- rename_metrics(read_pickle_file(config[['raw_fn']])) # raw data | ||||
| #print(head(pickle_data)) | ||||
| #offset = min(pickle_data$timestamp) | ||||
| #dat = pickle_data[complete.cases(pickle_data),] | ||||
| #dat$runtime = dat$timestamp - offset | ||||
| #dat['rmin'] = dat['runtime'] / 60 # runtime in minutes | ||||
| 
 | ||||
| #visualize_rawdata(dat) | ||||
| 
 | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user