160 lines
4.5 KiB
Python
Executable File
160 lines
4.5 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import csv
|
|
import sys
|
|
from pandas import DataFrame
|
|
from pandas import Grouper
|
|
from matplotlib import pyplot
|
|
import matplotlib.cm as cm
|
|
|
|
jobs = sys.argv[1].split(",")
|
|
prefix = sys.argv[2].split(",")
|
|
|
|
fileformat = ".pdf"
|
|
|
|
print("Plotting the job: " + str(sys.argv[1]))
|
|
print("Plotting with prefix: " + str(sys.argv[2]))
|
|
|
|
|
|
# Color map
|
|
colorMap = { "md_file_create": cm.tab10(0),
|
|
"md_file_delete": cm.tab10(1),
|
|
"md_mod": cm.tab10(2),
|
|
"md_other": cm.tab10(3),
|
|
"md_read": cm.tab10(4),
|
|
"read_bytes": cm.tab10(5),
|
|
"read_calls": cm.tab10(6),
|
|
"write_bytes": cm.tab10(7),
|
|
"write_calls": cm.tab10(8)
|
|
}
|
|
|
|
markerMap = { "md_file_create": "^",
|
|
"md_file_delete": "v",
|
|
"md_other": ".",
|
|
"md_mod": "<",
|
|
"md_read": ">",
|
|
"read_bytes": "h",
|
|
"read_calls": "H",
|
|
"write_bytes": "D",
|
|
"write_calls": "d"
|
|
}
|
|
|
|
linestyleMap = { "md_file_create": ":",
|
|
"md_file_delete": ":",
|
|
"md_mod": ":",
|
|
"md_other": ":",
|
|
"md_read": ":",
|
|
"read_bytes": "--",
|
|
"read_calls": "--",
|
|
"write_bytes": "-.",
|
|
"write_calls": "-."
|
|
}
|
|
|
|
# Plot the timeseries
|
|
def plot(prefix, header, row):
|
|
x = { h : d for (h, d) in zip(header, row)}
|
|
jobid = x["jobid"]
|
|
del x["jobid"]
|
|
del x["bcoding"]
|
|
# EB: Removing segment mean values
|
|
del x["mean_md_file_create"]
|
|
del x["mean_md_file_delete"]
|
|
del x["mean_md_mod"]
|
|
del x["mean_md_other"]
|
|
del x["mean_md_read"]
|
|
del x["mean_read_bytes"]
|
|
del x["mean_read_calls"]
|
|
del x["mean_write_bytes"]
|
|
del x["mean_write_calls"]
|
|
# EB: Renaming dict keys
|
|
x["md_file_create"] = x.pop("q16_md_file_create")
|
|
x["md_file_delete"] = x.pop("q16_md_file_delete")
|
|
x["md_mod"] = x.pop("q16_md_mod")
|
|
x["md_other"] = x.pop("q16_md_other")
|
|
x["md_read"] = x.pop("q16_md_read")
|
|
x["read_bytes"] = x.pop("q16_read_bytes")
|
|
x["read_calls"] = x.pop("q16_read_calls")
|
|
x["write_bytes"] = x.pop("q16_write_bytes")
|
|
x["write_calls"] = x.pop("q16_write_calls")
|
|
|
|
result = []
|
|
for k in x:
|
|
timeseries = x[k].split(":")
|
|
timeseries = [ float(x) for x in timeseries]
|
|
if sum(timeseries) == 0:
|
|
continue
|
|
timeseries = [ [k, x, s] for (s,x) in zip(timeseries, range(0, len(timeseries))) ]
|
|
result.extend(timeseries)
|
|
|
|
if len(result) == 0:
|
|
print("Empty job! Cannot plot!")
|
|
return
|
|
|
|
data = DataFrame(result, columns=["metrics", "segment", "value"])
|
|
groups = data.groupby(["metrics"])
|
|
metrics = DataFrame()
|
|
labels = []
|
|
colors = []
|
|
style = []
|
|
for name, group in groups:
|
|
style.append(linestyleMap[name] + markerMap[name])
|
|
colors.append(colorMap[name])
|
|
if name == "md_file_delete":
|
|
name = "file_delete"
|
|
if name == "md_file_create":
|
|
name = "file_create"
|
|
metrics[name] = [x[2] for x in group.values]
|
|
labels.append(name)
|
|
|
|
fsize = (8, 1 + 1.1 * len(labels))
|
|
fsizeFixed = (8, 2)
|
|
|
|
pyplot.close('all')
|
|
|
|
if len(labels) < 4 :
|
|
ax = metrics.plot(legend=True, sharex=True, grid = True, sharey=True, markersize=10, figsize=fsizeFixed, color=colors, style=style)
|
|
ax.set_ylabel("Value")
|
|
else:
|
|
ax = metrics.plot(subplots=True, legend=False, sharex=True, grid = True, sharey=True, markersize=10, figsize=fsize, color=colors, style=style)
|
|
for (i, l) in zip(range(0, len(labels)), labels):
|
|
ax[i].set_ylabel(l)
|
|
|
|
pyplot.xlabel("Segment number")
|
|
pyplot.savefig(prefix + "timeseries" + jobid + fileformat, bbox_inches='tight', dpi=150)
|
|
|
|
# Plot first 30 segments
|
|
if len(timeseries) <= 50:
|
|
return
|
|
|
|
|
|
if len(labels) < 4 :
|
|
ax = metrics.plot(legend=True, xlim=(0,30), sharex=True, grid = True, sharey=True, markersize=10, figsize=fsizeFixed, color=colors, style=style)
|
|
ax.set_ylabel("Value")
|
|
else:
|
|
ax = metrics.plot(subplots=True, xlim=(0,30), legend=False, sharex=True, grid = True, sharey=True, markersize=10, figsize=fsize, color=colors, style=style)
|
|
for (i, l) in zip(range(0, len(labels)), labels):
|
|
ax[i].set_ylabel(l)
|
|
|
|
pyplot.xlabel("Segment number")
|
|
pyplot.savefig(prefix + "timeseries" + jobid + "-30" + fileformat, bbox_inches='tight', dpi=150)
|
|
|
|
### end plotting function
|
|
|
|
|
|
|
|
#with open('job-io-datasets/datasets/job_codings.csv') as csv_file: # EB: old codings
|
|
with open('./datasets/job_codings_v3.csv') as csv_file: # EB: v3 codings moved to this repo
|
|
csv_reader = csv.reader(csv_file, delimiter=',')
|
|
line_count = 0
|
|
for row in csv_reader:
|
|
if line_count == 0:
|
|
header = row
|
|
line_count += 1
|
|
continue
|
|
job = row[0].strip()
|
|
if not job in jobs:
|
|
continue
|
|
else:
|
|
index = jobs.index(job)
|
|
plot(prefix[index] + "-" + str(index), header, row)
|