mistral-io-datasets/scripts/plot-single-ks-jobs.py

148 lines
4.1 KiB
Python
Executable File

#!/usr/bin/env python3
import csv
import sys
from pandas import DataFrame
from pandas import Grouper
import seaborn as sns
from matplotlib import pyplot
import matplotlib.cm as cm
jobs = sys.argv[1].split(",")
prefix = sys.argv[2].split(",")
fileformat = ".png"
print("Plotting the job: " + str(sys.argv[1]))
print("Plotting with prefix: " + str(sys.argv[2]))
# Color map
colorMap = { "md_file_create": cm.tab10(0),
"md_file_delete": cm.tab10(1),
"md_mod": cm.tab10(2),
"md_other": cm.tab10(3),
"md_read": cm.tab10(4),
"read_bytes": cm.tab10(5),
"read_calls": cm.tab10(6),
"write_bytes": cm.tab10(7),
"write_calls": cm.tab10(8)
}
markerMap = { "md_file_create": "^",
"md_file_delete": "v",
"md_other": ".",
"md_mod": "<",
"md_read": ">",
"read_bytes": "h",
"read_calls": "H",
"write_bytes": "D",
"write_calls": "d"
}
linestyleMap = { "md_file_create": ":",
"md_file_delete": ":",
"md_mod": ":",
"md_other": ":",
"md_read": ":",
"read_bytes": "--",
"read_calls": "--",
"write_bytes": "-.",
"write_calls": "-."
}
# Plot the timeseries
def plot(prefix, header, row):
x = { h : d for (h, d) in zip(header, row)}
jobid = x["jobid"]
del x["jobid"]
result = []
for k in x:
timeseries = x[k].split(":")
timeseries = [ float(x) for x in timeseries]
if sum(timeseries) == 0:
continue
timeseries = [ [k, x, s] for (s,x) in zip(timeseries, range(0, len(timeseries))) ]
result.extend(timeseries)
if len(result) == 0:
print("Empty job! Cannot plot!")
return
data = DataFrame(result, columns=["metrics", "segment", "value"])
groups = data.groupby(["metrics"])
metrics = DataFrame()
labels = []
colors = []
style = []
for name, group in groups:
style.append(linestyleMap[name] + markerMap[name])
colors.append(colorMap[name])
if name == "md_file_delete":
name = "file_delete"
if name == "md_file_create":
name = "file_create"
metrics[name] = [x[2] for x in group.values]
labels.append(name)
fsize = (8, 1 + 1.1 * len(labels))
fsizeFixed = (8, 2)
fsizeHist = (8, 4)
pyplot.close('all')
if len(labels) < 4 :
ax = metrics.plot(legend=True, sharex=True, grid = True, sharey=True, markersize=10, figsize=fsizeFixed, color=colors, style=style)
ax.set_ylabel("Value")
else:
ax = metrics.plot(subplots=True, legend=False, sharex=True, grid = True, sharey=True, markersize=10, figsize=fsize, color=colors, style=style)
for (i, l) in zip(range(0, len(labels)), labels):
ax[i].set_ylabel(l)
pyplot.xlabel("Segment number")
pyplot.savefig(prefix + "timeseries" + jobid + fileformat, bbox_inches='tight', dpi=150)
# Create a facetted grid
#g = sns.FacetGrid(tips, col="time", margin_titles=True)
#bins = np.linspace(0, 60, 13)
#g.map(plt.hist, "total_bill", color="steelblue", bins=bins)
ax = metrics.hist(sharex=True, grid = True, sharey=True, figsize=fsizeHist, bins=10)
pyplot.savefig(prefix + "hist" + jobid + fileformat, bbox_inches='tight', dpi=150)
# Plot first 30 segments
if len(timeseries) <= 50:
return
if len(labels) < 4 :
ax = metrics.plot(legend=True, xlim=(0,30), sharex=True, grid = True, sharey=True, markersize=10, figsize=fsizeFixed, color=colors, style=style)
ax.set_ylabel("Value")
else:
ax = metrics.plot(subplots=True, xlim=(0,30), legend=False, sharex=True, grid = True, sharey=True, markersize=10, figsize=fsize, color=colors, style=style)
for (i, l) in zip(range(0, len(labels)), labels):
ax[i].set_ylabel(l)
pyplot.xlabel("Segment number")
pyplot.savefig(prefix + "timeseries" + jobid + "-30" + fileformat, bbox_inches='tight', dpi=150)
### end plotting function
#with open('job-io-datasets/datasets/job_codings.csv') as csv_file: # EB: old codings
with open('./datasets/job_codings_v4.csv') as csv_file: # EB: v3 codings moved to this repo
csv_reader = csv.reader(csv_file, delimiter=',')
line_count = 0
for row in csv_reader:
if line_count == 0:
header = row
line_count += 1
continue
job = row[0].strip()
if not job in jobs:
continue
else:
index = jobs.index(job)
plot(prefix[index] + "-ks-" + str(index), header, row)