This commit is contained in:
Julian M. Kunkel 2019-05-14 17:19:32 +01:00
commit a92a0810f4
4 changed files with 179 additions and 0 deletions

2
.gitignore vendored
View File

@ -1 +1,3 @@
*.pyc
.idea/
indexer/data/

24
indexer/README Normal file
View File

@ -0,0 +1,24 @@
Author: Imad Hamoumi
1- Put your data into the directory /data.
2- Start the script with python run.py
3- follow the instructions
Note:
CSV:
+ Only two extensions are allowed currently. the first is csv and will be read using pandas.
+ You have to provide the name of the column where the scripte can read the text data.
PDF
+ In some cases, reading a pdf file is not allowed
+ Some PDF files are not well encoded
You can add your own training model in the pipline or change the cleaning parameters such as ngram size etc.

0
indexer/__init__.py Normal file
View File

153
indexer/run.py Normal file
View File

@ -0,0 +1,153 @@
from __future__ import print_function, unicode_literals
from PyInquirer import prompt
import os
import PyPDF2
import pandas as pd
import nltk
from nltk.corpus import stopwords
from nltk import word_tokenize
from sklearn.feature_extraction.text import TfidfTransformer, CountVectorizer
from sklearn.cluster import KMeans
from sklearn.pipeline import Pipeline
from elasticsearch import Elasticsearch
import time
DATA_DIR = "./indexer/data"
FILE_READER_PROTOCOL = {}
df = None
class MC:
HEADER = '\033[95m'
OKBLUE = '\033[94m'
OKGREEN = '\033[92m'
WARNING = '\033[93m'
FAIL = '\033[91m'
ENDC = '\033[0m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
print(MC.OKBLUE + MC.BOLD + "1. Step: reading textual data ..." + MC.ENDC)
questions = [
{
'type': 'input',
'name': 'extension',
'message': 'Select one of these extensions [.csv, .pdf]',
}
]
answers = prompt(questions)
documents = {}
if answers["extension"] == ".pdf":
for file_name in os.listdir(DATA_DIR)[:2]:
if file_name.endswith(answers["extension"]):
file = open(DATA_DIR + "/" + file_name, 'rb')
doc = ""
try:
fileReader = PyPDF2.PdfFileReader(file)
info = fileReader.getDocumentInfo()
for page_number in range(1, fileReader.getNumPages() + 1):
page = fileReader.getPage(page_number)
doc = doc + page.extractText() + " "
except:
FILE_READER_PROTOCOL[file_name] = "file can not be read"
if len(doc) > 0:
documents[file_name] = doc
else:
print(MC.WARNING + "File (" + file_name + ") is ignored." + MC.ENDC)
df = pd.DataFrame.from_dict(documents, columns=['data'])
if answers["extension"] == ".csv":
questions2 = [{
'type': 'input',
'name': 'file_name',
'message': 'Provide the name of the file',
},
{
'type': 'input',
'name': 'column_name',
'message': 'Provide the name column that contains text data',
}]
answers2 = prompt(questions2)
df = pd.read_csv(DATA_DIR + "/" + answers2["file_name"] + ".csv",
sep=';', error_bad_lines=False).rename(columns={
answers2["column_name"]: "data"
})
print(MC.OKBLUE + MC.BOLD + "2. Step: train model ..." + MC.ENDC)
nltk.download('stopwords')
nltk.download('punkt')
en_stop_words = stopwords.words('english')
en_stop_words.extend(['from', 'subject', 're', 'edu', 'use'])
if df:
training = df["data"]
for cluster_size in range(2, 16):
CNAME = "CLUSTER_" + str(cluster_size)
text_clf = Pipeline([('vect', CountVectorizer(stop_words=en_stop_words,
lowercase=True,
ngram_range=(1, 2),
max_features=None)),
('tfidf', TfidfTransformer()),
('clf', KMeans(n_clusters=cluster_size, random_state=0))
])
classifier = text_clf.fit(training)
cluster_labels = classifier.fit_predict(training)
df[CNAME] = cluster_labels
print(MC.OKBLUE + MC.BOLD + "3. Step: indexing data ..." + MC.ENDC)
es = Elasticsearch(
['54.37.31.100'],
http_auth=('oaboss', 'master'),
port=9201,
)
size = df["TITLE"].count()
for index, row in df.ix[:].iterrows():
word_tokens = word_tokenize(row.TITLE)
filtered_title = [w for w in word_tokens if not w in en_stop_words]
doc = {
"title": row.data,
# "title_cleaned": " ".join(filtered_title),
# "author": str(row.AUTHOR),
# "tags": str(row.TAGS),
# "discipline": str(row.DISCIPLINE),
# "url": str(row.URL),
# "notes": str(row.NOTES),
# "group_name": str(row.GROUP_TITLE),
# "group_description": str(row.GROUP_DESCRIPTION),
# "group_image": str(row.GROUP_IMG_URL),
# "language": str(row.LANG),
# "extras": str(row.EXTRAS),
# "published_at": row.PUBLICATION_DATE.strftime("%Y%m%d") if str(row.PUBLICATION_DATE) != 'NaT' else "",
"created_at": time.strftime("%Y%m%d"),
"cluster": [
{"id": "cluster_2_" + str(row.CLUSTER_2)},
{"id": "cluster_3_" + str(row.CLUSTER_3)},
{"id": "cluster_4_" + str(row.CLUSTER_4)},
{"id": "cluster_5_" + str(row.CLUSTER_5)},
{"id": "cluster_6_" + str(row.CLUSTER_6)},
{"id": "cluster_7_" + str(row.CLUSTER_7)},
{"id": "cluster_8_" + str(row.CLUSTER_8)},
{"id": "cluster_9_" + str(row.CLUSTER_9)},
{"id": "cluster_10_" + str(row.CLUSTER_10)},
{"id": "cluster_11_" + str(row.CLUSTER_11)},
{"id": "cluster_12_" + str(row.CLUSTER_12)},
{"id": "cluster_13_" + str(row.CLUSTER_13)},
{"id": "cluster_14_" + str(row.CLUSTER_14)},
{"id": "cluster_15_" + str(row.CLUSTER_15)},
]
}
try:
res = es.index(index="app", doc_type='document', body=doc)
except:
continue
# sys.stdout.write('\r Progress: '+ str(index) + ' ' + str(( index / size) * 100) + ' %' + ' Error:' + str(row.AUTHOR))