added .gitignore file
This commit is contained in:
parent
3f98aff635
commit
1195a161d6
|
@ -0,0 +1,221 @@
|
|||
# Byte-compiled / optimized / DLL files
|
||||
|
||||
__pycache__/
|
||||
|
||||
*.py[cod]
|
||||
|
||||
*$py.class
|
||||
|
||||
|
||||
|
||||
# C extensions
|
||||
|
||||
*.so
|
||||
|
||||
|
||||
|
||||
# Distribution / packaging
|
||||
|
||||
.Python
|
||||
|
||||
build/
|
||||
|
||||
develop-eggs/
|
||||
|
||||
dist/
|
||||
|
||||
downloads/
|
||||
|
||||
eggs/
|
||||
|
||||
.eggs/
|
||||
|
||||
lib/
|
||||
|
||||
lib64/
|
||||
|
||||
parts/
|
||||
|
||||
sdist/
|
||||
|
||||
var/
|
||||
|
||||
wheels/
|
||||
|
||||
*.egg-info/
|
||||
|
||||
.installed.cfg
|
||||
|
||||
*.egg
|
||||
|
||||
MANIFEST
|
||||
|
||||
|
||||
|
||||
# PyInstaller
|
||||
|
||||
# Usually these files are written by a python script from a template
|
||||
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
|
||||
*.manifest
|
||||
|
||||
*.spec
|
||||
|
||||
|
||||
|
||||
# Installer logs
|
||||
|
||||
pip-log.txt
|
||||
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
|
||||
|
||||
# Unit test / coverage reports
|
||||
|
||||
htmlcov/
|
||||
|
||||
.tox/
|
||||
|
||||
.nox/
|
||||
|
||||
.coverage
|
||||
|
||||
.coverage.*
|
||||
|
||||
.cache
|
||||
|
||||
nosetests.xml
|
||||
|
||||
coverage.xml
|
||||
|
||||
*.cover
|
||||
|
||||
.hypothesis/
|
||||
|
||||
.pytest_cache/
|
||||
|
||||
|
||||
|
||||
# Translations
|
||||
|
||||
*.mo
|
||||
|
||||
*.pot
|
||||
|
||||
|
||||
|
||||
# Django stuff:
|
||||
|
||||
*.log
|
||||
|
||||
local_settings.py
|
||||
|
||||
db.sqlite3
|
||||
|
||||
|
||||
|
||||
# Flask stuff:
|
||||
|
||||
instance/
|
||||
|
||||
.webassets-cache
|
||||
|
||||
|
||||
|
||||
# Scrapy stuff:
|
||||
|
||||
.scrapy
|
||||
|
||||
|
||||
|
||||
# Sphinx documentation
|
||||
|
||||
docs/_build/
|
||||
|
||||
|
||||
|
||||
# PyBuilder
|
||||
|
||||
target/
|
||||
|
||||
|
||||
|
||||
# Jupyter Notebook
|
||||
|
||||
.ipynb_checkpoints
|
||||
|
||||
|
||||
|
||||
# IPython
|
||||
|
||||
profile_default/
|
||||
|
||||
ipython_config.py
|
||||
|
||||
|
||||
|
||||
# pyenv
|
||||
|
||||
.python-version
|
||||
|
||||
|
||||
|
||||
# celery beat schedule file
|
||||
|
||||
celerybeat-schedule
|
||||
|
||||
|
||||
|
||||
# SageMath parsed files
|
||||
|
||||
*.sage.py
|
||||
|
||||
|
||||
|
||||
# Environments
|
||||
|
||||
.env
|
||||
|
||||
.venv
|
||||
|
||||
env/
|
||||
|
||||
venv/
|
||||
|
||||
ENV/
|
||||
|
||||
env.bak/
|
||||
|
||||
venv.bak/
|
||||
|
||||
|
||||
|
||||
# Spyder project settings
|
||||
|
||||
.spyderproject
|
||||
|
||||
.spyproject
|
||||
|
||||
|
||||
|
||||
# Rope project settings
|
||||
|
||||
.ropeproject
|
||||
|
||||
|
||||
|
||||
# mkdocs documentation
|
||||
|
||||
/site
|
||||
|
||||
|
||||
|
||||
# mypy
|
||||
|
||||
.mypy_cache/
|
||||
|
||||
.dmypy.json
|
||||
|
||||
dmypy.json
|
|
@ -12,7 +12,7 @@ import pandas as pd
|
|||
|
||||
from nltk.stem.porter import PorterStemmer
|
||||
|
||||
class BagOfWords():
|
||||
class BagOfWords:
|
||||
|
||||
def extract_words(text):
|
||||
'''takes article as argument, removes numbers,
|
||||
|
@ -46,7 +46,8 @@ class BagOfWords():
|
|||
|
||||
def make_matrix(series, vocab):
|
||||
'''calculates word stem frequencies in input articles.
|
||||
returns matrix (DataFrame) with relative word frequencies (0 <= values < 1)
|
||||
returns matrix (DataFrame) with relative word frequencies
|
||||
(0 <= values < 1)
|
||||
(rows: different articles, colums: different words in vocab)
|
||||
'''
|
||||
# create list of tuples
|
||||
|
@ -67,7 +68,9 @@ class BagOfWords():
|
|||
vector[i] += 1/word_count
|
||||
# add single vector as tuple
|
||||
vectors.append(tuple(vector))
|
||||
df_vectors = pd.DataFrame.from_records(vectors, index=None, columns=vocab)
|
||||
df_vectors = pd.DataFrame.from_records(vectors,
|
||||
index=None,
|
||||
columns=vocab)
|
||||
return df_vectors
|
||||
|
||||
def make_vocab(series):
|
||||
|
@ -87,41 +90,49 @@ class BagOfWords():
|
|||
'''creates list of all words that will be ignored
|
||||
'''
|
||||
# standard stopwords from nltk.corpus stopwords('english')
|
||||
stop_words = ['a', 'about', 'above', 'after', 'again', 'against', 'ain',
|
||||
'all', 'am', 'an', 'and', 'any', 'are', 'aren', 'aren\'t',
|
||||
'as', 'at', 'be', 'because', 'been', 'before', 'being',
|
||||
'below', 'between', 'both', 'but', 'by', 'can', 'couldn',
|
||||
'couldn\'t', 'd', 'did', 'didn', 'didn\'t', 'do', 'does',
|
||||
'doesn', 'doesn\'t', 'doing', 'don', 'don\'t', 'down',
|
||||
'during', 'each', 'few', 'for', 'from', 'further', 'had',
|
||||
'hadn', 'hadn\'t', 'has', 'hasn', 'hasn\'t', 'have', 'haven',
|
||||
'haven\'t', 'having', 'he', 'her', 'here', 'hers', 'herself',
|
||||
'him', 'himself', 'his', 'how', 'i', 'if', 'in', 'into', 'is',
|
||||
'isn', 'isn\'t', 'it', 'it\'s', 'its', 'itself', 'just', 'll',
|
||||
'm', 'ma', 'me', 'mightn', 'mightn\'t', 'more', 'most',
|
||||
'mustn', 'mustn\'t', 'my', 'myself', 'needn', 'needn\'t',
|
||||
'no', 'nor', 'not', 'now', 'o', 'of', 'off', 'on', 'once',
|
||||
'only', 'or', 'other', 'our', 'ours', 'ourselves', 'out',
|
||||
'over', 'own', 're', 's', 'same', 'shan', 'shan\'t', 'she',
|
||||
'she\'s', 'should', 'should\'ve', 'shouldn', 'shouldn\'t',
|
||||
'so', 'some', 'such', 't', 'than', 'that', 'that\'ll', 'the',
|
||||
'their', 'theirs', 'them', 'themselves', 'then', 'there',
|
||||
'these', 'they', 'this', 'those', 'through', 'to', 'too',
|
||||
'under', 'until', 'up', 've', 'very', 'was', 'wasn', 'wasn\'t',
|
||||
'we', 'were', 'weren', 'weren\'t', 'what', 'when', 'where',
|
||||
'which', 'while', 'who', 'whom', 'why', 'will', 'with', 'won',
|
||||
'won\'t', 'wouldn', 'wouldn\'t', 'y', 'you', 'you\'d', 'you\'ll',
|
||||
'you\'re', 'you\'ve', 'your', 'yours', 'yourself', 'yourselves']
|
||||
stop_words = ['a', 'about', 'above', 'after', 'again', 'against',
|
||||
'ain', 'all', 'am', 'an', 'and', 'any', 'are', 'aren',
|
||||
'aren\'t', 'as', 'at', 'be', 'because', 'been',
|
||||
'before', 'being', 'below', 'between', 'both', 'but',
|
||||
'by', 'can', 'couldn', 'couldn\'t', 'd', 'did', 'didn',
|
||||
'didn\'t', 'do', 'does', 'doesn', 'doesn\'t', 'doing',
|
||||
'don', 'don\'t', 'down', 'during', 'each', 'few',
|
||||
'for', 'from', 'further', 'had', 'hadn', 'hadn\'t',
|
||||
'has', 'hasn', 'hasn\'t', 'have', 'haven', 'haven\'t',
|
||||
'having', 'he', 'her', 'here', 'hers', 'herself', 'him',
|
||||
'himself', 'his', 'how', 'i', 'if', 'in', 'into', 'is',
|
||||
'isn', 'isn\'t', 'it', 'it\'s', 'its', 'itself', 'just',
|
||||
'll', 'm', 'ma', 'me', 'mightn', 'mightn\'t', 'more',
|
||||
'most', 'mustn', 'mustn\'t', 'my', 'myself', 'needn',
|
||||
'needn\'t', 'no', 'nor', 'not', 'now', 'o', 'of', 'off',
|
||||
'on', 'once', 'only', 'or', 'other', 'our', 'ours',
|
||||
'ourselves', 'out', 'over', 'own', 're', 's', 'same',
|
||||
'shan', 'shan\'t', 'she', 'she\'s', 'should',
|
||||
'should\'ve', 'shouldn', 'shouldn\'t', 'so', 'some',
|
||||
'such', 't', 'than', 'that', 'that\'ll', 'the', 'their',
|
||||
'theirs', 'them', 'themselves', 'then', 'there',
|
||||
'these', 'they', 'this', 'those', 'through', 'to',
|
||||
'too', 'under', 'until', 'up', 've', 'very', 'was',
|
||||
'wasn', 'wasn\'t', 'we', 'were', 'weren', 'weren\'t',
|
||||
'what', 'when', 'where', 'which', 'while', 'who',
|
||||
'whom', 'why', 'will', 'with', 'won', 'won\'t',
|
||||
'wouldn', 'wouldn\'t', 'y', 'you', 'you\'d', 'you\'ll',
|
||||
'you\'re', 'you\'ve', 'your', 'yours', 'yourself',
|
||||
'yourselves']
|
||||
|
||||
# add specific words
|
||||
stop_words.extend(['reuters', 'also', 'monday', 'tuesday', 'wednesday', 'thursday', 'friday'])
|
||||
stop_words.extend(['reuters', 'also', 'monday', 'tuesday',
|
||||
'wednesday', 'thursday', 'friday'])
|
||||
|
||||
# => does this make sense?:
|
||||
# remove the word 'not' from stop words
|
||||
stop_words.remove('not')
|
||||
#stop_words.remove('not')
|
||||
|
||||
for i in range(len(stop_words)):
|
||||
|
||||
# remove punctuation marks and strip endings from abbreviations
|
||||
#stop_words[i] = re.split(r'\W', stop_words[i])[0]
|
||||
|
||||
# reduce word to stem
|
||||
stop_words[i] = BagOfWords.reduce_word_to_stem(stop_words[i])
|
||||
# transform list to set to eliminate duplicates
|
||||
|
|
|
@ -9,7 +9,7 @@ import csv
|
|||
|
||||
import pandas as pd
|
||||
|
||||
class CsvHandler():
|
||||
class CsvHandler:
|
||||
|
||||
def read_csv(csv_file):
|
||||
df = pd.read_csv(csv_file,
|
||||
|
|
|
@ -20,7 +20,7 @@ from sklearn.feature_selection import SelectPercentile
|
|||
from sklearn.metrics import f1_score
|
||||
from sklearn.model_selection import StratifiedKFold
|
||||
|
||||
class DecisionTree():
|
||||
class DecisionTree:
|
||||
|
||||
def make_tree(dataset):
|
||||
|
||||
|
|
|
@ -10,20 +10,30 @@ import re
|
|||
|
||||
from nltk.stem.porter import PorterStemmer
|
||||
|
||||
class FilterKeywords():
|
||||
class FilterKeywords:
|
||||
|
||||
def search_keywords(dict_input):
|
||||
'''extracts relevant key-value pairs of in article's input dictionary.
|
||||
'''extracts relevant key-value pairs of in article's input dictionary,
|
||||
output are the contained keywords and their count.
|
||||
'''
|
||||
|
||||
# # list of regular expressions that match merger specific keywords
|
||||
# regex_list = [r'merge[rs]*d?', r'acquisitions?', r'acquires?',
|
||||
# r'business combinations?', r'combined compan(y|ies)',
|
||||
# r'(joint venture|JV)s?', r'take[ -]?overs?', r'tie-up',
|
||||
# r'deals?', r'transactions?', r'approv(e|ing|al|ed)s?',
|
||||
# r'(buy(s|ers?|ing)?|bought)', r'buy[ -]?outs?',
|
||||
# r'purchase', r'(sell(s|ers?|ing)?|sold)']
|
||||
|
||||
keyword_list = ['merge', 'merges', 'merged', 'merger', 'mergers', 'acquisition',
|
||||
'acquire', 'acquisitions', 'acquires', 'combine', 'combines',
|
||||
'combination', 'combined', 'joint', 'venture', 'JV', 'takeover',
|
||||
'take-over', 'tie-up', 'deal', 'deals', 'transaction', 'transactions',
|
||||
'approve', 'approves', 'approved', 'approving', 'approval',
|
||||
'approvals', 'buy', 'buys', 'buying', 'bought', 'buyout', 'buy-out',
|
||||
'purchase', 'sell', 'sells', 'selling', 'sold', 'seller', 'buyer']
|
||||
keyword_list = ['merge', 'merges', 'merged', 'merger', 'mergers',
|
||||
'acquisition', 'acquire', 'acquisitions', 'acquires',
|
||||
'combine', 'combines', 'combination', 'combined',
|
||||
'joint', 'venture', 'JV', 'takeover', 'take-over',
|
||||
'tie-up', 'deal', 'deals', 'transaction',
|
||||
'transactions', 'approve', 'approves', 'approved',
|
||||
'approving', 'approval', 'approvals', 'buy', 'buys',
|
||||
'buying', 'bought', 'buyout', 'buy-out', 'purchase',
|
||||
'sell', 'sells', 'selling', 'sold', 'seller', 'buyer']
|
||||
|
||||
# reduce words to stem
|
||||
stemmer = PorterStemmer()
|
||||
|
@ -50,7 +60,7 @@ class FilterKeywords():
|
|||
return dict_keywords
|
||||
|
||||
def count_keywords(dict_keywords):
|
||||
'''input: dict with article's keywords (key) and their count (value).
|
||||
'''input: dict with article's keywords (key) and their count (value),
|
||||
returns number of keywords that are found.
|
||||
'''
|
||||
return sum(dict_keywords.values())
|
||||
|
|
205
NaiveBayes.py
205
NaiveBayes.py
|
@ -2,37 +2,35 @@
|
|||
Naive Bayes Classifier
|
||||
======================
|
||||
|
||||
Naive Bayes is a probabilistic classifier that is able to predict,
|
||||
given an observation of an input, a probability distribution over a set of classes,
|
||||
rather than only outputting the most likely class that the observation should belong to.
|
||||
Naive Bayes is a probabilistic classifier that is able to predict a
|
||||
probability distribution over a set of classes, rather than only
|
||||
outputting the most likely class that the observation should belong to.
|
||||
'Naive' means, that it assumes that the value of a particular feature
|
||||
(word in an article) is independent of the value of any other feature,
|
||||
given the class variable (label). It considers each of these features
|
||||
to contribute independently to the probability that it belongs to its category,
|
||||
given the label. It considers each of these features to contribute
|
||||
independently to the probability that it belongs to its category,
|
||||
regardless of any possible correlations between these features.
|
||||
'''
|
||||
from BagOfWords import BagOfWords
|
||||
from CsvHandler import CsvHandler
|
||||
|
||||
from sklearn.feature_extraction.text import CountVectorizer
|
||||
from sklearn.feature_selection import SelectPercentile
|
||||
#from sklearn.feature_extraction.text import CountVectorizer
|
||||
#from sklearn.feature_selection import SelectPercentile
|
||||
from sklearn.metrics import recall_score, precision_score
|
||||
from sklearn.model_selection import StratifiedKFold
|
||||
from sklearn.model_selection import train_test_split
|
||||
#from sklearn.model_selection import train_test_split
|
||||
from sklearn.naive_bayes import GaussianNB
|
||||
|
||||
# toDo: für Julian erst mal ohne SelectPercentile machen
|
||||
|
||||
class NaiveBayes():
|
||||
class NaiveBayes:
|
||||
|
||||
def make_naive_bayes(dataset):
|
||||
'''fits naive bayes model with StratifiedKFold, uses my BOW
|
||||
'''
|
||||
|
||||
'''fits naive bayes model with StratifiedKFold,
|
||||
uses my BOW
|
||||
'''
|
||||
print('# starting naive bayes')
|
||||
print()
|
||||
|
||||
# alternative: use only articles' header => may give better results
|
||||
# join title and text
|
||||
X = dataset['Title'] + ' ' + dataset['Text']
|
||||
y = dataset['Label']
|
||||
|
||||
|
@ -56,18 +54,11 @@ class NaiveBayes():
|
|||
# transform testing data and return the matrix
|
||||
testing_data = BagOfWords.make_matrix(X[test], vocab)
|
||||
|
||||
# apply select percentile
|
||||
selector = SelectPercentile(percentile=25)
|
||||
selector.fit(training_data, y[train])
|
||||
|
||||
training_data_r = selector.transform(training_data)
|
||||
testing_data_r = selector.transform(testing_data)
|
||||
|
||||
#fit classifier
|
||||
classifier.fit(training_data_r, y[train])
|
||||
classifier.fit(training_data, y[train])
|
||||
#predict class
|
||||
predictions_train = classifier.predict(training_data_r)
|
||||
predictions_test = classifier.predict(testing_data_r)
|
||||
predictions_train = classifier.predict(training_data)
|
||||
predictions_test = classifier.predict(testing_data)
|
||||
|
||||
#store metrics
|
||||
rec = recall_score(y[test], predictions_test)
|
||||
|
@ -80,73 +71,146 @@ class NaiveBayes():
|
|||
#print metrics of test set
|
||||
print('prediction of testing set:')
|
||||
print('F1 score: min = {0:.2f}, max = {0:.2f}, average = {0:.2f}'
|
||||
.format(min(f1_scores), max(f1_scores), sum(f1_scores)/float(len(f1_scores))))
|
||||
.format(min(f1_scores), max(f1_scores),
|
||||
sum(f1_scores)/float(len(f1_scores))))
|
||||
print()
|
||||
#print('overfit testing: prediction of training set')
|
||||
#print('F1 score: min = {0:.2f}, max = {0:.2f}, average = {0:.2f}'.
|
||||
#format(min(f1_scores_train), max(f1_scores_train),sum(f1_scores_train)/float(len(f1_scores_train))))
|
||||
#format(min(f1_scores_train), max(f1_scores_train),
|
||||
#sum(f1_scores_train)/float(len(f1_scores_train))))
|
||||
#print()
|
||||
|
||||
print('# ending naive bayes')
|
||||
print()
|
||||
|
||||
# def make_naive_bayes_selectpercentile(dataset):
|
||||
# '''fits naive bayes model with StratifiedKFold, uses my BOW
|
||||
# feature selection: select 0.25-percentile
|
||||
# '''
|
||||
|
||||
# print('# starting naive bayes')
|
||||
# print()
|
||||
|
||||
# # alternative: use only articles' header => may give better results
|
||||
# X = dataset['Title'] + ' ' + dataset['Text']
|
||||
# y = dataset['Label']
|
||||
|
||||
# # use stratified k-fold cross-validation as split method
|
||||
# skf = StratifiedKFold(n_splits = 10, shuffle=True)
|
||||
|
||||
# classifier = GaussianNB()
|
||||
|
||||
# # lists for metrics
|
||||
# recall_scores = []
|
||||
# precision_scores = []
|
||||
# f1_scores = []
|
||||
|
||||
# # for each fold
|
||||
# n = 0
|
||||
# for train, test in skf.split(X,y):
|
||||
# # BOW
|
||||
# vocab = BagOfWords.make_vocab(X[train])
|
||||
# # fit the training data and then return the matrix
|
||||
# training_data = BagOfWords.make_matrix(X[train], vocab)
|
||||
# # transform testing data and return the matrix
|
||||
# testing_data = BagOfWords.make_matrix(X[test], vocab)
|
||||
|
||||
# # apply select percentile
|
||||
# selector = SelectPercentile(percentile=25)
|
||||
# selector.fit(training_data, y[train])
|
||||
|
||||
# training_data_r = selector.transform(training_data)
|
||||
# testing_data_r = selector.transform(testing_data)
|
||||
|
||||
# #fit classifier
|
||||
# classifier.fit(training_data_r, y[train])
|
||||
# #predict class
|
||||
# predictions_train = classifier.predict(training_data_r)
|
||||
# predictions_test = classifier.predict(testing_data_r)
|
||||
|
||||
# #store metrics
|
||||
# rec = recall_score(y[test], predictions_test)
|
||||
# recall_scores.append(rec)
|
||||
# prec = precision_score(y[train], predictions_train)
|
||||
# precision_scores.append(prec)
|
||||
# # equation for f1 score
|
||||
# f1_scores.append(2 * (prec * rec)/(prec + rec))
|
||||
|
||||
# #print metrics of test set
|
||||
# print('prediction of testing set:')
|
||||
# print('F1 score: min = {0:.2f}, max = {0:.2f}, average = {0:.2f}'
|
||||
# .format(min(f1_scores), max(f1_scores), sum(f1_scores)/float(len(f1_scores))))
|
||||
# print()
|
||||
# #print('overfit testing: prediction of training set')
|
||||
# #print('F1 score: min = {0:.2f}, max = {0:.2f}, average = {0:.2f}'.
|
||||
# #format(min(f1_scores_train), max(f1_scores_train),
|
||||
# sum(f1_scores_train)/float(len(f1_scores_train))))
|
||||
# #print()
|
||||
|
||||
def make_naive_bayes_CV(dataset):
|
||||
'''alternative: uses CountVectorizer (faster)
|
||||
'''
|
||||
# alternative: use only articles' header => may give better results
|
||||
X = dataset['Title'] + '.' + dataset['Text'] + '.'
|
||||
y = dataset['Label']
|
||||
# print('# ending naive bayes')
|
||||
# print()
|
||||
|
||||
# use stratified k-fold cross-validation as split method
|
||||
skf = StratifiedKFold(n_splits = 10, shuffle=True)
|
||||
|
||||
# def make_naive_bayes_CV(dataset):
|
||||
# '''alternative: uses CountVectorizer (faster)
|
||||
# '''
|
||||
# # alternative: use only articles' header => may give better results
|
||||
# X = dataset['Title'] + '.' + dataset['Text'] + '.'
|
||||
# y = dataset['Label']
|
||||
|
||||
count_vector = CountVectorizer()
|
||||
# # use stratified k-fold cross-validation as split method
|
||||
# skf = StratifiedKFold(n_splits = 10, shuffle=True)
|
||||
|
||||
# count_vector = CountVectorizer()
|
||||
|
||||
classifier = GaussianNB()
|
||||
# classifier = GaussianNB()
|
||||
|
||||
# lists for metrics predicted on test/train set
|
||||
f1_scores, f1_scores_train = []
|
||||
# # lists for metrics predicted on test/train set
|
||||
# f1_scores, f1_scores_train = []
|
||||
|
||||
# for each fold (10 times)
|
||||
# fold number
|
||||
n = 0
|
||||
for train, test in skf.split(X,y):
|
||||
# # for each fold (10 times)
|
||||
# # fold number
|
||||
# n = 0
|
||||
# for train, test in skf.split(X,y):
|
||||
|
||||
# fit the training data and then return the matrix
|
||||
training_data = count_vector.fit_transform(X[train], y[train]).toarray()
|
||||
# transform testing data and return the matrix
|
||||
testing_data = count_vector.transform(X[test]).toarray()
|
||||
# # fit the training data and then return the matrix
|
||||
# training_data = count_vector.fit_transform(X[train], y[train]).toarray()
|
||||
# # transform testing data and return the matrix
|
||||
# testing_data = count_vector.transform(X[test]).toarray()
|
||||
|
||||
# apply select percentile
|
||||
selector = SelectPercentile(percentile=25)
|
||||
selector.fit(training_data, y[train])
|
||||
# # apply select percentile
|
||||
# selector = SelectPercentile(percentile=25)
|
||||
# selector.fit(training_data, y[train])
|
||||
|
||||
training_data_r = selector.transform(training_data)
|
||||
testing_data_r = selector.transform(testing_data)
|
||||
# training_data_r = selector.transform(training_data)
|
||||
# testing_data_r = selector.transform(testing_data)
|
||||
|
||||
#fit classifier
|
||||
classifier.fit(training_data_r, y[train])
|
||||
# #fit classifier
|
||||
# classifier.fit(training_data_r, y[train])
|
||||
|
||||
#predict class
|
||||
predictions_train = classifier.predict(training_data_r)
|
||||
predictions_test = classifier.predict(testing_data_r)
|
||||
# #predict class
|
||||
# predictions_train = classifier.predict(training_data_r)
|
||||
# predictions_test = classifier.predict(testing_data_r)
|
||||
|
||||
#store metrics predicted on test set
|
||||
f1_scores.append(f1_score(y[test], predictions_test))
|
||||
# #store metrics predicted on test set
|
||||
# f1_scores.append(f1_score(y[test], predictions_test))
|
||||
|
||||
#store metrics predicted on train set
|
||||
f1_scores_train.append(f1_score(y[train], predictions_train))
|
||||
# #store metrics predicted on train set
|
||||
# f1_scores_train.append(f1_score(y[train], predictions_train))
|
||||
|
||||
#print metrics of test set
|
||||
print('--------------------')
|
||||
print('prediction of testing set:')
|
||||
print('F1 score: min = {}, max = {}, average = {}'.format(min(f1_scores), max(f1_scores),sum(f1_scores)/float(len(f1_scores))))
|
||||
# #print metrics of test set
|
||||
# print('--------------------')
|
||||
# print('prediction of testing set:')
|
||||
# print('F1 score: min = {}, max = {}, average = {}'
|
||||
# .format(min(f1_scores), max(f1_scores),
|
||||
# sum(f1_scores)/float(len(f1_scores))))
|
||||
|
||||
print()
|
||||
print('prediction of training set:')
|
||||
print('F1 score: min = {}, max = {}, average = {}'.format(min(f1_scores_train), max(f1_scores_train),sum(f1_scores_train)/float(len(f1_scores_train))))
|
||||
print()
|
||||
# print()
|
||||
# print('prediction of training set:')
|
||||
# print('F1 score: min = {}, max = {}, average = {}'
|
||||
# .format(min(f1_scores_train), max(f1_scores_train),
|
||||
# sum(f1_scores_train)/float(len(f1_scores_train))))
|
||||
# print()
|
||||
|
||||
# def analyze_errors_cv(dataset):
|
||||
# '''calculates resubstitution error
|
||||
|
@ -181,7 +245,8 @@ class NaiveBayes():
|
|||
# if y_train_test[i] != predictions[i]:
|
||||
# n += 1
|
||||
# print('error no.{}'.format(n))
|
||||
# print('prediction at index {} is: {}, but actual is: {}'.format(i, predictions[i], y_train_test[i]))
|
||||
# print('prediction at index {} is: {}, but actual is: {}'
|
||||
# .format(i, predictions[i], y_train_test[i]))
|
||||
# print(X_train_test[i])
|
||||
# print(y_train_test[i])
|
||||
# print()
|
||||
|
|
Loading…
Reference in New Issue