changes due to NER
This commit is contained in:
parent
14e5af9d7d
commit
188a2d582c
43
NER.py
43
NER.py
@ -8,6 +8,7 @@ like persons, organizations and countries, e.g.
|
|||||||
|
|
||||||
import os
|
import os
|
||||||
|
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
from nltk.tag import StanfordNERTagger
|
from nltk.tag import StanfordNERTagger
|
||||||
from nltk.tokenize import word_tokenize
|
from nltk.tokenize import word_tokenize
|
||||||
|
|
||||||
@ -41,13 +42,38 @@ class NER:
|
|||||||
continuous_chunk.append(current_chunk)
|
continuous_chunk.append(current_chunk)
|
||||||
return continuous_chunk
|
return continuous_chunk
|
||||||
|
|
||||||
if __name__ == '__main__':
|
def plot_barchart():
|
||||||
|
organizations = ['org1', 'org2', 'org3', 'org4', 'org5', 'org6']
|
||||||
|
num_mentions = [5, 2, 33, 12, 6, 10]
|
||||||
|
#n, bins, patches = plt.hist(num_mentions, 6, normed=1, facecolor='green')
|
||||||
|
plt.plot(organizations, num_mentions, 'ro', ms = 10)
|
||||||
|
plt.xlabel('companies')
|
||||||
|
plt.ylabel('count')
|
||||||
|
plt.title('Company mentions in articles')
|
||||||
|
plt.grid(True)
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
def find_companies(text):
|
||||||
#set paths
|
#set paths
|
||||||
java_path = "C:\\Program Files (x86)\\Java\\jre1.8.0_181"
|
java_path = "C:\\Program Files (x86)\\Java\\jre1.8.0_181"
|
||||||
os.environ['JAVAHOME'] = java_path
|
os.environ['JAVAHOME'] = java_path
|
||||||
|
|
||||||
text = '''BANGKOK, Sept 22 (Reuters) - Southeast Asian stock markets
|
organizations = []
|
||||||
|
# create list of (word, tag) tuples
|
||||||
|
tagged_words = NER.tag_words(text)
|
||||||
|
# put coherent names together
|
||||||
|
nes = NER.get_coherent_names(tagged_words)
|
||||||
|
nes_coherent = [(" ".join([token for token, tag in ne]), ne[0][1]) for ne in nes]
|
||||||
|
#print(nes_coherent)
|
||||||
|
for tuple in nes_coherent:
|
||||||
|
if tuple[1] == 'ORGANIZATION':
|
||||||
|
organizations.append(tuple[0])
|
||||||
|
return organizations
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
|
||||||
|
#plot_barchart()
|
||||||
|
text = '''BANGKOK, Sept 22 (Reuters) - Southeast Asian stock markets
|
||||||
\nmostly fell in light volumes on Tuesday as energy shares
|
\nmostly fell in light volumes on Tuesday as energy shares
|
||||||
tracked \nfalls in global oil prices, while weaknesses in banking shares
|
tracked \nfalls in global oil prices, while weaknesses in banking shares
|
||||||
\namid concerns about loans to an ailing steel firm sent the Thai
|
\namid concerns about loans to an ailing steel firm sent the Thai
|
||||||
@ -71,15 +97,4 @@ class NER:
|
|||||||
region, Indonesia's Perusahaan Gas \nNegara was down 4.4 percent and
|
region, Indonesia's Perusahaan Gas \nNegara was down 4.4 percent and
|
||||||
Singapore's Keppel \nCorp was down 2.5 percent as crude oil prices fell
|
Singapore's Keppel \nCorp was down 2.5 percent as crude oil prices fell
|
||||||
\namid uncertainty over global demand. \nFor Asian Companies click.'''
|
\namid uncertainty over global demand. \nFor Asian Companies click.'''
|
||||||
|
print(NER.find_companies(text))
|
||||||
organizations = []
|
|
||||||
# create list of (word, tag) tuples
|
|
||||||
tagged_words = tag_words(text)
|
|
||||||
# put coherent names together
|
|
||||||
nes = get_coherent_names(tagged_words)
|
|
||||||
nes_coherent = [(" ".join([token for token, tag in ne]), ne[0][1]) for ne in nes]
|
|
||||||
#print(nes_coherent)
|
|
||||||
for tuple in nes_coherent:
|
|
||||||
if tuple[1] == 'ORGANIZATION':
|
|
||||||
organizations.append(tuple[0])
|
|
||||||
print(organizations)
|
|
@ -38,15 +38,20 @@ class NaiveBayes:
|
|||||||
cv = CountVectorizer()
|
cv = CountVectorizer()
|
||||||
|
|
||||||
# use stratified k-fold cross-validation as split method
|
# use stratified k-fold cross-validation as split method
|
||||||
skf = StratifiedKFold(n_splits = 10, shuffle=True)
|
skf = StratifiedKFold(n_splits = 10, shuffle=True, random_state=5)
|
||||||
|
|
||||||
classifier = GaussianNB()
|
classifier = GaussianNB()
|
||||||
|
|
||||||
# lists for metrics
|
# metrics
|
||||||
recall_scores = []
|
recall_scores = []
|
||||||
precision_scores = []
|
precision_scores = []
|
||||||
f1_scores = []
|
f1_scores = []
|
||||||
|
|
||||||
|
# probabilities of each class (of each fold)
|
||||||
|
class_prob = []
|
||||||
|
# counts number of training samples observed in each class
|
||||||
|
class_counts = []
|
||||||
|
|
||||||
# for each fold
|
# for each fold
|
||||||
n = 0
|
n = 0
|
||||||
for train, test in skf.split(X,y):
|
for train, test in skf.split(X,y):
|
||||||
@ -54,18 +59,18 @@ class NaiveBayes:
|
|||||||
n += 1
|
n += 1
|
||||||
print('# split no. ' + str(n))
|
print('# split no. ' + str(n))
|
||||||
|
|
||||||
# eigenes BOW => schlechtere ergebnisse
|
# # eigenes BOW => schlechtere ergebnisse
|
||||||
vocab = BagOfWords.make_vocab(X[train])
|
# vocab = BagOfWords.make_vocab(X[train])
|
||||||
# fit the training data and then return the matrix
|
|
||||||
training_data = BagOfWords.make_matrix(X[train], vocab)
|
|
||||||
# transform testing data and return the matrix
|
|
||||||
testing_data = BagOfWords.make_matrix(X[test], vocab)
|
|
||||||
|
|
||||||
# # # using CountVectorizer:
|
|
||||||
# # fit the training data and then return the matrix
|
# # fit the training data and then return the matrix
|
||||||
# training_data = cv.fit_transform(X[train], y[train]).toarray()
|
# training_data = BagOfWords.make_matrix(X[train], vocab)
|
||||||
# # transform testing data and return the matrix
|
# # transform testing data and return the matrix
|
||||||
# testing_data = cv.transform(X[test]).toarray()
|
# testing_data = BagOfWords.make_matrix(X[test], vocab)
|
||||||
|
|
||||||
|
# using CountVectorizer:
|
||||||
|
# fit the training data and then return the matrix
|
||||||
|
training_data = cv.fit_transform(X[train], y[train]).toarray()
|
||||||
|
# transform testing data and return the matrix
|
||||||
|
testing_data = cv.transform(X[test]).toarray()
|
||||||
|
|
||||||
# # apply select percentile
|
# # apply select percentile
|
||||||
# selector = SelectPercentile(percentile=25)
|
# selector = SelectPercentile(percentile=25)
|
||||||
@ -97,6 +102,9 @@ class NaiveBayes:
|
|||||||
# equation for f1 score
|
# equation for f1 score
|
||||||
f1_scores.append(2 * (prec * rec)/(prec + rec))
|
f1_scores.append(2 * (prec * rec)/(prec + rec))
|
||||||
|
|
||||||
|
class_prob.append(classifier.class_prior_)
|
||||||
|
class_counts.append(classifier.class_count_)
|
||||||
|
|
||||||
##########################
|
##########################
|
||||||
#print metrics of test set
|
#print metrics of test set
|
||||||
print('-------------------------')
|
print('-------------------------')
|
||||||
@ -114,6 +122,15 @@ class NaiveBayes:
|
|||||||
max(f1_scores),
|
max(f1_scores),
|
||||||
sum(f1_scores)/float(len(f1_scores))))
|
sum(f1_scores)/float(len(f1_scores))))
|
||||||
print()
|
print()
|
||||||
|
# print probability of each class
|
||||||
|
print('probability of each class:')
|
||||||
|
print()
|
||||||
|
print(class_prob)
|
||||||
|
print()
|
||||||
|
print('number of samples of each class:')
|
||||||
|
print()
|
||||||
|
print(class_counts)
|
||||||
|
print()
|
||||||
|
|
||||||
##### nur für overfit testing ###########
|
##### nur für overfit testing ###########
|
||||||
#print('overfit testing: prediction of training set')
|
#print('overfit testing: prediction of training set')
|
||||||
|
167
NaiveBayes_simple.py
Normal file
167
NaiveBayes_simple.py
Normal file
@ -0,0 +1,167 @@
|
|||||||
|
'''
|
||||||
|
Naive Bayes Classifier
|
||||||
|
======================
|
||||||
|
|
||||||
|
basic implementation of naive bayes.
|
||||||
|
'''
|
||||||
|
|
||||||
|
from CsvHandler import CsvHandler
|
||||||
|
|
||||||
|
from sklearn.feature_extraction.text import CountVectorizer
|
||||||
|
|
||||||
|
from sklearn.metrics import recall_score, precision_score
|
||||||
|
from sklearn.model_selection import KFold
|
||||||
|
from sklearn.naive_bayes import GaussianNB
|
||||||
|
|
||||||
|
class NaiveBayes_simple:
|
||||||
|
|
||||||
|
def make_naive_bayes(dataset):
|
||||||
|
'''fits naive bayes model with StratifiedKFold,
|
||||||
|
uses my BOW
|
||||||
|
'''
|
||||||
|
print('# fitting model')
|
||||||
|
print('# ...')
|
||||||
|
|
||||||
|
# split data into text and label set
|
||||||
|
# join title and text
|
||||||
|
X = dataset['Title'] + ' ' + dataset['Text']
|
||||||
|
y = dataset['Label']
|
||||||
|
|
||||||
|
cv = CountVectorizer()
|
||||||
|
|
||||||
|
# k-fold cross-validation as split method
|
||||||
|
kf = KFold(n_splits=10, shuffle=True, random_state=5)
|
||||||
|
|
||||||
|
classifier = GaussianNB()
|
||||||
|
|
||||||
|
# metrics
|
||||||
|
recall_scores = []
|
||||||
|
precision_scores = []
|
||||||
|
f1_scores = []
|
||||||
|
|
||||||
|
# probabilities of each class (of each fold)
|
||||||
|
class_prob = []
|
||||||
|
# counts number of training samples observed in each class
|
||||||
|
class_counts = []
|
||||||
|
|
||||||
|
# for each fold
|
||||||
|
n = 0
|
||||||
|
for train, test in kf.split(X,y):
|
||||||
|
|
||||||
|
n += 1
|
||||||
|
print('# split no. ' + str(n))
|
||||||
|
|
||||||
|
# using CountVectorizer:
|
||||||
|
# fit the training data and then return the matrix
|
||||||
|
training_data = cv.fit_transform(X[train], y[train]).toarray()
|
||||||
|
# transform testing data and return the matrix
|
||||||
|
testing_data = cv.transform(X[test]).toarray()
|
||||||
|
|
||||||
|
#fit classifier
|
||||||
|
classifier.fit(training_data, y[train])
|
||||||
|
#predict class
|
||||||
|
predictions_train = classifier.predict(training_data)
|
||||||
|
predictions_test = classifier.predict(testing_data)
|
||||||
|
|
||||||
|
#print and store metrics
|
||||||
|
rec = recall_score(y[test], predictions_test)
|
||||||
|
print('rec: ' + str(rec))
|
||||||
|
recall_scores.append(rec)
|
||||||
|
prec = precision_score(y[train], predictions_train)
|
||||||
|
print('prec: ' + str(prec))
|
||||||
|
print('#')
|
||||||
|
precision_scores.append(prec)
|
||||||
|
# equation for f1 score
|
||||||
|
f1_scores.append(2 * (prec * rec)/(prec + rec))
|
||||||
|
|
||||||
|
class_prob.append(classifier.class_prior_)
|
||||||
|
class_counts.append(classifier.class_count_)
|
||||||
|
|
||||||
|
##########################
|
||||||
|
#print metrics of test set
|
||||||
|
print('-------------------------')
|
||||||
|
print('prediction of testing set:')
|
||||||
|
print('Precision score: min = {}, max = {}, average = {}'
|
||||||
|
.format(min(precision_scores),
|
||||||
|
max(precision_scores),
|
||||||
|
sum(precision_scores)/float(len(precision_scores))))
|
||||||
|
print('Recall score: min = {}, max = {}, average = {}'
|
||||||
|
.format(min(recall_scores),
|
||||||
|
max(recall_scores),
|
||||||
|
sum(recall_scores)/float(len(recall_scores))))
|
||||||
|
print('F1 score: min = {}, max = {}, average = {}'
|
||||||
|
.format(min(f1_scores),
|
||||||
|
max(f1_scores),
|
||||||
|
sum(f1_scores)/float(len(f1_scores))))
|
||||||
|
print()
|
||||||
|
# print probability of each class
|
||||||
|
print('probability of each class:')
|
||||||
|
print()
|
||||||
|
print(class_prob)
|
||||||
|
print()
|
||||||
|
print('number of samples of each class:')
|
||||||
|
print()
|
||||||
|
print(class_counts)
|
||||||
|
print()
|
||||||
|
|
||||||
|
##### nur für overfit testing ###########
|
||||||
|
#print('overfit testing: prediction of training set')
|
||||||
|
#print('F1 score: min = {0:.2f}, max = {0:.2f}, average = {0:.2f}'.
|
||||||
|
#format(min(f1_scores_train), max(f1_scores_train),
|
||||||
|
#sum(f1_scores_train)/float(len(f1_scores_train))))
|
||||||
|
#print()
|
||||||
|
|
||||||
|
######## nur für resubstitutionsfehler benötigt ########
|
||||||
|
def analyze_errors(dataset):
|
||||||
|
'''calculates resubstitution error
|
||||||
|
shows indices of false classified articles
|
||||||
|
uses Gaussian Bayes with train test split
|
||||||
|
'''
|
||||||
|
X_train_test = dataset['Title'] + ' ' + dataset['Text']
|
||||||
|
y_train_test = dataset['Label']
|
||||||
|
|
||||||
|
count_vector = CountVectorizer()
|
||||||
|
# fit the training data and then return the matrix
|
||||||
|
training_data = count_vector.fit_transform(X_train_test).toarray()
|
||||||
|
# transform testing data and return the matrix
|
||||||
|
testing_data = count_vector.transform(X_train_test).toarray()
|
||||||
|
|
||||||
|
# Naive Bayes
|
||||||
|
classifier = GaussianNB()
|
||||||
|
# fit classifier
|
||||||
|
classifier.fit(training_data, y_train_test)
|
||||||
|
|
||||||
|
# Predict class
|
||||||
|
predictions = classifier.predict(testing_data)
|
||||||
|
print('Errors at index:')
|
||||||
|
print()
|
||||||
|
n = 0
|
||||||
|
for i in range(len(y_train_test)):
|
||||||
|
if y_train_test[i] != predictions[i]:
|
||||||
|
n += 1
|
||||||
|
print('error no.{}'.format(n))
|
||||||
|
print('prediction at index {} is: {}, but actual is: {}'
|
||||||
|
.format(i, predictions[i], y_train_test[i]))
|
||||||
|
print(X_train_test[i])
|
||||||
|
print(y_train_test[i])
|
||||||
|
print()
|
||||||
|
#print metrics
|
||||||
|
print('F1 score: ', format(f1_score(y_train_test, predictions)))
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
|
||||||
|
print('# starting naive bayes')
|
||||||
|
print('# ...')
|
||||||
|
|
||||||
|
file = 'classification_labelled_corrected.csv'
|
||||||
|
|
||||||
|
# read csv file
|
||||||
|
print('# reading dataset')
|
||||||
|
print('# ...')
|
||||||
|
|
||||||
|
dataset = CsvHandler.read_csv(file)
|
||||||
|
|
||||||
|
make_naive_bayes(dataset)
|
||||||
|
|
||||||
|
print('#')
|
||||||
|
print('# ending naive bayes')
|
Loading…
x
Reference in New Issue
Block a user