changed NER from nltk to Stanford => better results

This commit is contained in:
Anne Lorenz 2018-09-21 11:00:56 +02:00
parent 6a8386e897
commit 66d366b36e
2 changed files with 56 additions and 53 deletions

55
NER.py
View File

@ -2,37 +2,35 @@
Named Entity Recognition (NER)
==============================
NER takes a text as input and searches for names of persons, companies
and countries.
Stanford NER takes a text as input and returns a list of entities
like persons, organizations and countries, e.g.
'''
from nltk import ne_chunk, pos_tag, sent_tokenize, word_tokenize
from nltk.tree import Tree
''' TODO: falsch klassifiert:
[('PERSON', 'Bangkok '), ('PERSON', 'Krung Thai Bank Pcl '),
('PERSON', 'Maybank Kim Eng Securities '), ('PERSON', 'Krung Thai Bank '),
('PERSON', 'Siam Commercial Bank '), ('PERSON', 'Singapore '),
('PERSON', 'Keppel Corp '), ('ORGANIZATION', 'Companies ')]
'''
import os
from nltk.tag import StanfordNERTagger
from nltk.tokenize import word_tokenize
class NER:
#set paths
java_path = "C:\\Program Files (x86)\\Java\\jre1.8.0_181"
os.environ['JAVAHOME'] = java_path
def get_ne_with_label(text):
labels = []
names = []
# TODO: letztes Wort wird nicht erkannt
for chunk in ne_chunk(pos_tag(word_tokenize(text + 'lastword.'))):
if hasattr(chunk, 'label'):
name = ''
for c in chunk:
name += c[0] + ' '
if name not in names:
names.append(name.strip())
labels.append(chunk.label())
#print(chunk.label(), ' '.join(c[0] for c in chunk))
return list(zip(labels, names))
stanford_classifier = 'C:\\Users\\anne.lorenz\\Bachelorarbeit\\Stanford'
'NER\\stanford-ner-2018-02-27\\classifiers\\english.all.3class.distsim.crf.ser.gz'
stanford_ner_path = 'C:\\Users\\anne.lorenz\\Bachelorarbeit\\Stanford'
'NER\\stanford-ner-2018-02-27\\stanford-ner.jar'
test_article = '''BANGKOK, Sept 22 (Reuters) - Southeast Asian stock markets
def search_organizations(text):
# create tagger object
st = StanfordNERTagger(stanford_classifier, stanford_ner_path, encoding='utf-8')
tokenized_text = word_tokenize(text)
classified_text = st.tag(tokenized_text)
return classified_text
if __name__ == '__main__':
text = '''BANGKOK, Sept 22 (Reuters) - Southeast Asian stock markets
\nmostly fell in light volumes on Tuesday as energy shares
tracked \nfalls in global oil prices, while weaknesses in banking shares
\namid concerns about loans to an ailing steel firm sent the Thai
@ -57,4 +55,9 @@ test_article = '''BANGKOK, Sept 22 (Reuters) - Southeast Asian stock markets
Singapore's Keppel \nCorp was down 2.5 percent as crude oil prices fell
\namid uncertainty over global demand. \nFor Asian Companies click.'''
print(NER.get_ne_with_label(test_article))
classified_text = search_organizations(text)
# print organizations
for tuple in classified_text:
if tuple[1] == "ORGANIZATION":
print(tuple)

8
SVM.py
View File

@ -52,10 +52,10 @@ class SVM:
pipeline = Pipeline([('perc', selector), ('SVC', SVC())])
grid = GridSearchCV(pipeline, {'perc__percentile': [25, 50, 75, 100],
'SVC__kernel': ['linear','poly'],
'SVC__gamma': [0.0001, 0.001, 0.01, 0.1],
'SVC__C': [0.0001, 0.001, 0.1]},
grid = GridSearchCV(pipeline, {'perc__percentile': [25, 50, 75],
'SVC__kernel': ['linear'],
'SVC__gamma': [0.000001, 0.00001, 0.0001, 0.001],
'SVC__C': [0.001, 0.01, 0.1, 1, 10]},
cv=skf,
scoring=make_scorer(f1_score))