Doc2Vec test

This commit is contained in:
annealias 2019-03-25 21:44:32 +01:00
parent 86e34de8ab
commit 94f501ab6d
3 changed files with 263 additions and 1 deletions

View File

@ -73,13 +73,16 @@ class MultinomialNaiveBayes_Word2Vec:
all_data = read_corpus(X, tokens_only=False)
# instantiate a Doc2Vec object
doc2vec_model = Doc2Vec(training_data, vector_size=100, window=2, min_count=1, workers=4)
doc2vec_model = Doc2Vec(training_data, vector_size=100, window=2, min_count=2, epochs = 40)
# Frage: hier dürfen keine negativen Werte drin sein für Naive Bayes?
print(doc2vec_model.docvecs[0])
print(doc2vec_model.docvecs[1])
print(doc2vec_model.docvecs[2])
training_data = [doc2vec_model.docvecs[i] for i in range(len(training_data))]
# Frage: muss man bei den testing daten auch einen tag mit machen?
testing_data = [doc2vec_model.infer_vector(vector) for vector in testing_data]
#fit classifier

128
src/test.py Normal file
View File

@ -0,0 +1,128 @@
from BagOfWords import BagOfWords
import csv
import gensim
from gensim.models.doc2vec import Doc2Vec, TaggedDocument
import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_selection import SelectPercentile
from sklearn.metrics import recall_score, precision_score
import sklearn
from sklearn.model_selection import StratifiedKFold
from sklearn.naive_bayes import MultinomialNB
from sklearn.model_selection import train_test_split
# read current data set from csv
df = pd.read_csv('../data/interactive_labeling_round_11.csv',
sep='|',
usecols=range(1,13), # drop first column 'unnamed'
encoding='utf-8',
quoting=csv.QUOTE_NONNUMERIC,
quotechar='\'')
dataset = df.loc[df['Label'] != -1][:100].reset_index(drop=True)
train = dataset[:15]
test = dataset[15:20].reset_index(drop=True)
classifier = MultinomialNB(alpha=1.0e-10,
fit_prior=False,
class_prior=None)
def make_tagged_document(row):
# TaggedDocument wie wo was?
# tags (a list of tokens). Tags may be one or more unicode string tokens,
# but typical practice (which will also be the most memory-efficient) is
# for the tags list to include a unique integer id as the only tag.
# also kein Label?
return TaggedDocument(words=BagOfWords.extract_words(row['Text']),
tags=[row['Label']])
tagged_train_data=train.apply(lambda row: make_tagged_document(row), axis=1)
print(tagged_train_data[0])
tagged_test_data=test.apply(lambda row: make_tagged_document(row), axis=1)
print(tagged_test_data[0])
model = Doc2Vec(vector_size=100,
min_count=20,
epochs=40,
negative=0)
model.build_vocab(tagged_train_data)
model.train(tagged_train_data,
total_examples=model.corpus_count,
epochs=model.epochs)
model.docvecs.count
y_train=np.array([doc.tags[0] for doc in tagged_train_data])
y_test=np.array([doc.tags[0] for doc in tagged_test_data])
X_train=[model.infer_vector(doc.words, steps=20) for doc in tagged_train_data]
X_test=[model.infer_vector(doc.words, steps=20) for doc in tagged_test_data]
# X_train=np.vstack(X_train)
# X_test=np.vstack(X_test)
# X_test.shape
# y_test.shape
# X_train.shape
# y_train.shape
print(X_test)
print(y_test)
print(X_train)
print(y_train)
# reshape data
X_train = np.array(X_train)
X_test = np.array(X_test)
#X_train = X_train.reshape((X_train.shape[0],1,X_train.shape[1]))
#X_test = X_test.reshape((X_test.shape[0],1,X_test.shape[1]))
X_train.shape
X_test.shape
#fit classifier
classifier.fit(X_train, y_train)
#predict class
predictions_train = classifier.predict(X_train)
predictions_test = classifier.predict(X_test)
#print and store metrics
rec = recall_score(y_test, predictions_test, average='weighted')
print('rec: ' + str(rec))
recall_scores.append(rec)
prec = precision_score(y_test, predictions_test, average='weighted')
print('prec: ' + str(prec))
print('#')
precision_scores.append(prec)
# equation for f1 score
f1_scores.append(2 * (prec * rec)/(prec + rec))
##########################
# probability estimates for the test vector (testing_data)
class_probs = classifier.predict_proba(testing_data)
# number of samples encountered for each class during fitting
# this value is weighted by the sample weight when provided
class_count = classifier.class_count_
# classes in order used
classes = classifier.classes_
# return classes and vector of class estimates
print (recall_scores, precision_scores, f1_scores, class_probs)

131
src/test_2.py Normal file
View File

@ -0,0 +1,131 @@
from BagOfWords import BagOfWords
import csv
import gensim
from gensim.models.doc2vec import Doc2Vec, TaggedDocument
import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_selection import SelectPercentile
from sklearn.metrics import recall_score, precision_score
import sklearn
from sklearn.model_selection import StratifiedKFold
from sklearn.naive_bayes import MultinomialNB
from sklearn.model_selection import train_test_split
# read current data set from csv
df = pd.read_csv('../data/interactive_labeling_round_11.csv',
sep='|',
usecols=range(1,13), # drop first column 'unnamed'
encoding='utf-8',
quoting=csv.QUOTE_NONNUMERIC,
quotechar='\'')
dataset = df.loc[df['Label'] != -1].reset_index(drop=True)
X = dataset['Title'] + '. ' + dataset['Text']
y = dataset['Label']
classifier = MultinomialNB(alpha=1.0e-10,
fit_prior=False,
class_prior=None)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=5)
def read_corpus(data, tokens_only=False):
list_of_lists = []
for i, text in enumerate(data):
if tokens_only:
list_of_lists.append(BagOfWords.extract_words(text))
else:
# For training data, add tags
list_of_lists.append(gensim.models.doc2vec.TaggedDocument(BagOfWords.extract_words(text), [i]))
return list_of_lists
tagged_train_data = read_corpus(X_train, tokens_only=False)
print('tagged_train_data[0]:')
print(tagged_train_data[0])
tagged_test_data = read_corpus(X_test, tokens_only=False)
print('tagged_test_data[0]:')
print(tagged_test_data[0])
model = Doc2Vec(vector_size=100,
min_count=20,
epochs=40,
negative=0)
model.build_vocab(tagged_train_data)
model.train(tagged_train_data,
total_examples=model.corpus_count,
epochs=model.epochs)
model.docvecs.count
#y_train=np.array([doc.tags[0] for doc in tagged_train_data])
#y_test=np.array([doc.tags[0] for doc in tagged_test_data])
X_train=[model.infer_vector(doc.words, steps=20) for doc in tagged_train_data]
X_test=[model.infer_vector(doc.words, steps=20) for doc in tagged_test_data]
X_train=np.vstack(X_train)
X_test=np.vstack(X_test)
X_test.shape
y_test.shape
X_train.shape
y_train.shape
print('X_test:')
print(X_test)
print('y_test:')
print(y_test)
print('X_train:')
print(X_train)
print('y_train:')
print(y_train)
# hier: ValueError: Input X must be non-negative
#fit classifier
classifier.fit(X_train, y_train)
#predict class
predictions_train = classifier.predict(X_train)
predictions_test = classifier.predict(X_test)
#print and store metrics
rec = recall_score(y_test, predictions_test, average='weighted')
print('rec: ' + str(rec))
recall_scores.append(rec)
prec = precision_score(y_test, predictions_test, average='weighted')
print('prec: ' + str(prec))
print('#')
precision_scores.append(prec)
# equation for f1 score
f1_scores.append(2 * (prec * rec)/(prec + rec))
##########################
# probability estimates for the test vector (testing_data)
class_probs = classifier.predict_proba(testing_data)
# number of samples encountered for each class during fitting
# this value is weighted by the sample weight when provided
class_count = classifier.class_count_
# classes in order used
classes = classifier.classes_
# return classes and vector of class estimates
print (recall_scores, precision_scores, f1_scores, class_probs)