thesis-anne/src/MultinomialNaiveBayes.py

198 lines
5.7 KiB
Python

'''
Multinomial Naive Bayes Classifier
==================================
'''
from BagOfWords import BagOfWords
import csv
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_selection import SelectPercentile
from sklearn.metrics import recall_score, precision_score
import sklearn
from sklearn.model_selection import StratifiedKFold
from sklearn.naive_bayes import MultinomialNB
class MultinomialNaiveBayes:
def make_mnb(dataset, sklearn_cv=True, percentile=100):
'''fits naive bayes model with StratifiedKFold
'''
print('# starting multinomial naive bayes')
print('# ...')
# split data into text and label set
# join title and text
X = dataset['Title'] + '. ' + dataset['Text']
y = dataset['Label']
if sklearn_cv:
cv = CountVectorizer()
# use stratified k-fold cross-validation as split method
skf = StratifiedKFold(n_splits = 10, shuffle=True, random_state=5)
classifier = MultinomialNB(alpha=1.0e-10,
fit_prior=False,
class_prior=None)
# metrics
recall_scores = []
precision_scores = []
f1_scores = []
# probabilities of each class (of each fold)
#class_prob = []
# counts number of training samples observed in each class
#class_counts = []
# for each fold
n = 0
for train, test in skf.split(X,y):
n += 1
print('# split no. ' + str(n))
if sklearn_cv:
# use sklearn CountVectorizer
# fit the training data and then return the matrix
training_data = cv.fit_transform(X[train], y[train]).toarray()
# transform testing data and return the matrix
testing_data = cv.transform(X[test]).toarray()
else:
# use my own BagOfWords python implementation
stemming = True
rel_freq = True
extracted_words = BagOfWords.extract_all_words(X[train])
vocab = BagOfWords.make_vocab(extracted_words)
# fit the training data and then return the matrix
training_data = BagOfWords.make_matrix(extracted_words,
vocab, rel_freq, stemming)
# transform testing data and return the matrix
extracted_words = BagOfWords.extract_all_words(X[test])
testing_data = BagOfWords.make_matrix(extracted_words,
vocab, rel_freq, stemming)
# apply select percentile
selector = SelectPercentile(percentile=percentile)
selector.fit(training_data, y[train])
# new reduced data sets
training_data_r = selector.transform(training_data)
testing_data_r = selector.transform(testing_data)
#fit classifier
classifier.fit(training_data_r, y[train])
#predict class
predictions_train = classifier.predict(training_data_r)
predictions_test = classifier.predict(testing_data_r)
# print('train:')
# print(y[train])
# print('test:')
# print(y[test])
# print()
# print('pred')
# print(predictions_test)
#print and store metrics
rec = recall_score(y[test], predictions_test, average='weighted')
print('rec: ' + str(rec))
recall_scores.append(rec)
prec = precision_score(y[test], predictions_test, average='weighted')
print('prec: ' + str(prec))
print('#')
precision_scores.append(prec)
# equation for f1 score
f1_scores.append(2 * (prec * rec)/(prec + rec))
#class_prob.append(classifier.class_prior_)
#class_counts.append(classifier.class_count_)
##########################
# probability estimates for the test vector (testing_data)
class_probs = classifier.predict_proba(testing_data)
# number of samples encountered for each class during fitting
# this value is weighted by the sample weight when provided
class_count = classifier.class_count_
# classes in order used
classes = classifier.classes_
print('average: recall, precision, f1 score')
print(sum(recall_scores)/10, sum(precision_scores)/10, sum(f1_scores)/10)
# return classes and vector of class estimates
return recall_scores, precision_scores, f1_scores, class_probs
######## nur für resubstitutionsfehler benötigt ########
def analyze_errors(training, testing):
'''calculates resubstitution error
shows indices of false classified articles
uses Gaussian Bayes with train test split
'''
X_train = training['Title'] + ' ' + training['Text']
y_train = training['Label']
X_test = testing['Title'] + ' ' + testing['Text']
y_test = testing['Label']
count_vector = CountVectorizer()
# fit the training data and then return the matrix
training_data = count_vector.fit_transform(X_train).toarray()
# transform testing data and return the matrix
testing_data = count_vector.transform(X_test).toarray()
# Naive Bayes
classifier = MultinomialNB(alpha=1.0e-10,
fit_prior=False,
class_prior=None)
# fit classifier
classifier.fit(training_data, y_train)
# Predict class
predictions = classifier.predict(testing_data)
print(type(y_test))
print(len(y_test))
print(type(predictions))
print(len(predictions))
print('Errors at index:')
print()
n = 0
for i in range(len(y_test)):
if y_test[i] != predictions[i]:
n += 1
print('error no.{}'.format(n))
print('prediction at index {} is: {}, but actual is: {}'
.format(i, predictions[i], y_test[i]))
print(X_test[i])
print(y_test[i])
print()
#print metrics
print('F1 score: ', format(f1_score(y_test, predictions)))
if __name__ == '__main__':
# read csv file
print('# reading dataset')
print('# ...')
# read current data set from csv
df = pd.read_csv('../data/interactive_labeling_round_11.csv',
sep='|',
usecols=range(1,13), # drop first column 'unnamed'
encoding='utf-8',
quoting=csv.QUOTE_NONNUMERIC,
quotechar='\'')
# select only labeled articles
MultinomialNaiveBayes.make_mnb(df.loc[df['Label'] != -1].reset_index(drop=True), sklearn_cv=True, percentile=100)