ddn-ime-evaluation/eval_performance.R

208 lines
6.4 KiB
R
Raw Normal View History

2018-10-04 14:53:44 +00:00
#!/usr/bin/env Rscript
library(sqldf)
library(plyr)
library(plot3D)
library(ggplot2)
require(gridExtra)
theme_set(theme_gray(base_size = 25))
args = commandArgs(trailingOnly=TRUE)
print(args)
if (2 != length(args)) {
print("Requires 2 parameters)")
q()
}
file_db = args[1]
folder_out = args[2]
print(file_db)
make_facet_label <- function(variable, value){
return(paste0(value, " KiB"))
}
#connection = dbConnect(SQLite(), dbname='results.ddnime.db')
print(file_db)
connection = dbConnect(SQLite(), dbname=file_db)
#dbdata = dbGetQuery(connection,'select mnt, siox, avg(duration) as ad, app, procs, blocksize from p group by mnt, siox, procs, blocksize, app')
#dbdata = dbGetQuery(connection,'select * from p where tag=="mpio-individual"')
#dbdata = dbGetQuery(connection,'select *, (x*y*z) as blocksize from p where count=8')
#dbdata = dbGetQuery(connection,'select * from p where count<5')
#dbdata = dbGetQuery(connection,'select * from p where iface="mpio" and (ppn==1 or ppn=4 or ppn=8)')
dbdata = dbGetQuery(connection,'select * from p where (ppn==1 or ppn=4 or ppn=8)')
dbdata[,"blocksize"] = dbdata$x * dbdata$y * dbdata$z * 4
#summary(dbdata)
nn_lab <- sprintf(fmt="NN=%d", unique(dbdata$nn))
names(nn_lab) <- unique(dbdata$nn)
ppn_lab <- sprintf(fmt="PPN=%d", unique(dbdata$ppn))
names(ppn_lab) <- unique(dbdata$ppn)
breaks <- c(unique(dbdata$blocksize))
#fig_w = 4
#fig_h = 4
#w = c(4, 6, 4)
#h = c(4, 4, 4)
#event = c("paper", "isc-pres", "poster")
#dims_list = data.frame(h, w, event) # df is a data frame
for (scale in c('log', 'linear')) {
fss = unique(dbdata$fs)
for (fs in fss) {
data1 = dbdata[fs == dbdata$fs, ]
#apps = unique(data1$app)
ifaces = unique(data1$iface)
for (iface in ifaces) {
data2 = data1[iface == data1$iface, ]
apps = unique(data2$app)
for (app in apps) {
data3 = data2[app == data2$app, ]
types = unique(data3$type)
for (type in types) {
data4 = data3[type == data3$type, ]
chunkeds = unique(data4$chunked)
for (chunked in chunkeds) {
data5 = data4[chunked == data4$chunked, ]
filleds = unique(data4$filled)
for (filled in filleds) {
data6 = data5[filled == data5$filled, ]
unlimiteds = unique(data5$unlimited)
for (unlimited in unlimiteds) {
data = data6[unlimited == data5$unlimited, ]
dat_write <- data.frame(real_perf=data$fsize/data$wio/1024^2, nn=data$nn, ppn=data$ppn, iface=data$iface, chunked=data$chunked, type=data$type, perf=data$write, blocksize=data$blocksize, access="write", tio="wio", stringsAsFactors = FALSE)
dat_read <- data.frame(real_perf=data$fsize/data$rio/1024^2, nn=data$nn, ppn=data$ppn, iface=data$iface, chunked=data$chunked, type=data$type, perf=data$read, blocksize=data$blocksize, access="read", tio="rio", stringsAsFactors = FALSE)
dat <- rbind(dat_write, dat_read)
dat$lab_ppn <- paste0("PPN=", dat$ppn)
dat$lab_iface <- dat$iface
dat$lab_iface[dat$lab_iface == "posix"] = "POSIX"
dat$lab_iface[dat$lab_iface == "mpio"] = "MPIIO"
dat$lab_iface[dat$lab_iface == "ime"] = "IME"
dat$lab_access <- dat$access
dat$lab_access[dat$lab_access == "write"] = "Write"
dat$lab_access[dat$lab_access == "read"] = "Read"
print(summary(dat))
#print(dat[0:10])
#library(ggplot2)
#p = qplot(1, 1)
#grid.arrange(p, p, respect=TRUE) # both viewports are square
#grid.arrange(p, p, respect=TRUE, heights=c(1,2)) # relative heights
#p1 = p + theme(aspect.ratio=3)
#grid.arrange(p,p1, respect=TRUE) # one is square, the other thinner
for (print_legend in c("yes", "no")) {
#p <- ggplot(data=dat, aes(x=nn, y=perf, colour=as.factor(blocksize/1024), group=blocksize), ymin=0) +
p <- ggplot(data=dat, aes(x=nn, y=real_perf, colour=as.factor(blocksize/1024), group=blocksize), ymin=0) +
#ggtitle("Write") +
#facet_grid(ppn ~ ., labeller = labeller(nn = as_labeller(lab), ppn = as_labeller(lab))) +
#facet_grid(lab_ppn ~ lab_iface + lab_access) +
facet_grid(lab_ppn ~ lab_access) +
xlab("Nodes") +
ylab("Performance in MiB/s") +
theme(axis.text.x=element_text(angle=90, hjust=0.95, vjust=0.5)) +
#scale_y_log10() +
scale_x_continuous(breaks = c(unique(data$nn))) +
scale_color_manual(name="Blocksize in KiB: ", values=c('#999999','#E69F00', '#56B4E9', '#000000'), breaks=sort(unique(data$blocksize)/1024)) +
#stat_summary(fun.y="median", geom="line", aes(group=factor(blocksize))) +
stat_summary(fun.y="max", geom="line", aes(group=factor(blocksize))) +
#coord_fixed(ratio=1) +
theme(aspect.ratio=1) +
theme(plot.margin=grid::unit(c(0,0,0,0), "mm")) +
#geom_boxplot()
geom_point()
#grid.arrange(p, p, respect=TRUE) # both viewports are square
#p1 = p + theme(aspect.ratio=3)
#grid.arrange(p,p1, respect=TRUE) # one is square, the other thinner
#p = qplot(1, 1)
#grid.arrange(p, p, respect=TRUE) # both viewports are square
#grid.arrange(p, p, respect=TRUE, heights=c(1,2)) # relative heights
if(fs=="lustre") {
print("Lustre limit")
p = p + ylim(0, 20000)
}
#if(fs=="fuse") {
#p = p + theme(legend.position="bottom")
#}
if(print_legend=="yes") {
p = p + theme(legend.position="bottom")
}
else {
p = p + theme(legend.position="none")
}
if ('log' == scale) {
p = p + scale_y_log10()
p = p + scale_x_log10(breaks = c(unique(data$nn)))
#p = p + scale_y_log10(breaks=c(100, 1000, 10000, 40000))
}
{
#p = p + scale_x_discrete(breaks=mixedsort(unique(dat$lab)), limits=mixedsort(unique(dat$lab)))
}
filename_eps_base = sprintf("%s/performance_%s_%s_%s_%s_CHUNK:%s_FILL:%s_LIM:%s_legend:%s_SCALE:%s", folder_out, app, fs, iface, type, chunked, filled, unlimited, print_legend, scale)
filenmae_eps=""
if(fs=="ime") {
filename = sprintf("%s_size:%dx%d", filename_eps_base, 6, 8)
filename_eps = sprintf("%s.eps", filename)
filename_png = sprintf("%s.png", filename)
filename_pdf = sprintf("%s.pdf", filename)
ggsave(filename_eps, width = 6, height = 6)
ggsave(filename_png, dpi=300)
system(sprintf("epstopdf %s", filename_eps))
system(sprintf("rm %s", filename_eps))
system(sprintf("pdfcrop %s %s", filename_pdf, filename_pdf))
}
#filename = sprintf("%s_size:%dx%d", filename_eps_base, 12, 8)
filename = sprintf("%s_size:%dx%d", filename_eps_base, 9, 6)
filename_eps = sprintf("%s.eps", filename)
filename_png = sprintf("%s.png", filename)
filename_pdf = sprintf("%s.pdf", filename)
#ggsave(filename_eps, width = 12, height = 6)
ggsave(filename_eps, dpi=300)
ggsave(filename_png, dpi=300)
system(sprintf("epstopdf %s", filename_eps))
system(sprintf("rm %s", filename_eps))
system(sprintf("pdfcrop %s %s", filename_pdf, filename_pdf))
} # for legend
}}}}}}}
} # scale